{"title":"条件效率测度的中心极限定理和非参数两阶段生产模型中“可分性”条件的检验","authors":"Cinzia Daraio, Léopold Simar, Paul W. Wilson","doi":"10.1111/ectj.12103","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we demonstrate that standard central limit theorem (CLT) results do not hold for means of non-parametric, conditional efficiency estimators, and we provide new CLTs that permit applied researchers to make valid inference about mean conditional efficiency or to compare mean efficiency across groups of producers. The new CLTs are used to develop a test of the restrictive ‘separability’ condition that is necessary for second-stage regressions of efficiency estimates on environmental variables. We show that if this condition is violated, not only are second-stage regressions difficult to interpret and perhaps meaningless, but also first-stage, unconditional efficiency estimates are misleading. As such, the test developed here is of fundamental importance to applied researchers using non-parametric methods for efficiency estimation. The test is shown to be consistent and its local power is examined. Our simulation results indicate that our tests perform well both in terms of size and power. We provide a real-world empirical example by re-examining the paper by Aly et al. (1990, <i>Review of Economics and Statistics 72</i>, 211–18) and rejecting the separability assumption implicitly assumed by Aly et al., calling into question results that appear in hundreds of papers that have been published in recent years.</p></div>","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2017-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/ectj.12103","citationCount":"165","resultStr":"{\"title\":\"Central limit theorems for conditional efficiency measures and tests of the ‘separability’ condition in non-parametric, two-stage models of production\",\"authors\":\"Cinzia Daraio, Léopold Simar, Paul W. Wilson\",\"doi\":\"10.1111/ectj.12103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this paper, we demonstrate that standard central limit theorem (CLT) results do not hold for means of non-parametric, conditional efficiency estimators, and we provide new CLTs that permit applied researchers to make valid inference about mean conditional efficiency or to compare mean efficiency across groups of producers. The new CLTs are used to develop a test of the restrictive ‘separability’ condition that is necessary for second-stage regressions of efficiency estimates on environmental variables. We show that if this condition is violated, not only are second-stage regressions difficult to interpret and perhaps meaningless, but also first-stage, unconditional efficiency estimates are misleading. As such, the test developed here is of fundamental importance to applied researchers using non-parametric methods for efficiency estimation. The test is shown to be consistent and its local power is examined. Our simulation results indicate that our tests perform well both in terms of size and power. We provide a real-world empirical example by re-examining the paper by Aly et al. (1990, <i>Review of Economics and Statistics 72</i>, 211–18) and rejecting the separability assumption implicitly assumed by Aly et al., calling into question results that appear in hundreds of papers that have been published in recent years.</p></div>\",\"PeriodicalId\":50555,\"journal\":{\"name\":\"Econometrics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2017-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/ectj.12103\",\"citationCount\":\"165\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics Journal\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ectj.12103\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics Journal","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ectj.12103","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Central limit theorems for conditional efficiency measures and tests of the ‘separability’ condition in non-parametric, two-stage models of production
In this paper, we demonstrate that standard central limit theorem (CLT) results do not hold for means of non-parametric, conditional efficiency estimators, and we provide new CLTs that permit applied researchers to make valid inference about mean conditional efficiency or to compare mean efficiency across groups of producers. The new CLTs are used to develop a test of the restrictive ‘separability’ condition that is necessary for second-stage regressions of efficiency estimates on environmental variables. We show that if this condition is violated, not only are second-stage regressions difficult to interpret and perhaps meaningless, but also first-stage, unconditional efficiency estimates are misleading. As such, the test developed here is of fundamental importance to applied researchers using non-parametric methods for efficiency estimation. The test is shown to be consistent and its local power is examined. Our simulation results indicate that our tests perform well both in terms of size and power. We provide a real-world empirical example by re-examining the paper by Aly et al. (1990, Review of Economics and Statistics 72, 211–18) and rejecting the separability assumption implicitly assumed by Aly et al., calling into question results that appear in hundreds of papers that have been published in recent years.
期刊介绍:
The Econometrics Journal was established in 1998 by the Royal Economic Society with the aim of creating a top international field journal for the publication of econometric research with a standard of intellectual rigour and academic standing similar to those of the pre-existing top field journals in econometrics. The Econometrics Journal is committed to publishing first-class papers in macro-, micro- and financial econometrics. It is a general journal for econometric research open to all areas of econometrics, whether applied, computational, methodological or theoretical contributions.