完全二分图型Boltzmann机在平均场近似中的随机复杂性

Yu Nishiyama, Sumio Watanabe
{"title":"完全二分图型Boltzmann机在平均场近似中的随机复杂性","authors":"Yu Nishiyama,&nbsp;Sumio Watanabe","doi":"10.1002/ecjc.20307","DOIUrl":null,"url":null,"abstract":"<p>A variational Bayes method is proposed as an approximation method for implementing Bayesian posterior distribution with moderate computational complexity. Its effectiveness for real problems has been confirmed. The variational Bayes method is a method which generalizes the mean field approximation used in calculating partition functions in statistical physics. In recent years, the mathematical properties of the precision with which it is approximated have been investigated. In this paper, the authors consider the asymptotic stochastic complexity in the case of applying the mean field approximation to complete bipartite graph-type Boltzmann machines and theoretically derive that asymptotic form. Also, based on the results, the authors quantitatively consider the difference between Bayesian posterior distribution and the posterior distribution of the mean field approximation. © 2007 Wiley Periodicals, Inc. Electron Comm Jpn Pt 3, 90(9): 1– 9, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecjc.20307</p>","PeriodicalId":100407,"journal":{"name":"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)","volume":"90 9","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/ecjc.20307","citationCount":"0","resultStr":"{\"title\":\"Stochastic complexity of complete bipartite graph-type Boltzmann machines in mean field approximation\",\"authors\":\"Yu Nishiyama,&nbsp;Sumio Watanabe\",\"doi\":\"10.1002/ecjc.20307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A variational Bayes method is proposed as an approximation method for implementing Bayesian posterior distribution with moderate computational complexity. Its effectiveness for real problems has been confirmed. The variational Bayes method is a method which generalizes the mean field approximation used in calculating partition functions in statistical physics. In recent years, the mathematical properties of the precision with which it is approximated have been investigated. In this paper, the authors consider the asymptotic stochastic complexity in the case of applying the mean field approximation to complete bipartite graph-type Boltzmann machines and theoretically derive that asymptotic form. Also, based on the results, the authors quantitatively consider the difference between Bayesian posterior distribution and the posterior distribution of the mean field approximation. © 2007 Wiley Periodicals, Inc. Electron Comm Jpn Pt 3, 90(9): 1– 9, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecjc.20307</p>\",\"PeriodicalId\":100407,\"journal\":{\"name\":\"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)\",\"volume\":\"90 9\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/ecjc.20307\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecjc.20307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecjc.20307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种变分贝叶斯方法作为实现具有中等计算复杂度的贝叶斯后验分布的近似方法。它对实际问题的有效性已经得到证实。变分贝叶斯方法是一种推广统计物理中用于计算配分函数的平均场近似的方法。近年来,人们对其近似精度的数学性质进行了研究。在本文中,作者考虑了将平均场近似应用于完全二部图型Boltzmann机的情况下的渐近随机复杂性,并从理论上推导了它的渐近形式,定量地考虑了贝叶斯后验分布与平均场近似后验分布之间的差异。©2007 Wiley Periodicals,股份有限公司Electron Comm Jpn Pt 3,90(9):2007年1月9日;在线发表于Wiley InterScience(www.InterScience.Wiley.com)。DOI 10.1002/ecjc.20307
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic complexity of complete bipartite graph-type Boltzmann machines in mean field approximation

A variational Bayes method is proposed as an approximation method for implementing Bayesian posterior distribution with moderate computational complexity. Its effectiveness for real problems has been confirmed. The variational Bayes method is a method which generalizes the mean field approximation used in calculating partition functions in statistical physics. In recent years, the mathematical properties of the precision with which it is approximated have been investigated. In this paper, the authors consider the asymptotic stochastic complexity in the case of applying the mean field approximation to complete bipartite graph-type Boltzmann machines and theoretically derive that asymptotic form. Also, based on the results, the authors quantitatively consider the difference between Bayesian posterior distribution and the posterior distribution of the mean field approximation. © 2007 Wiley Periodicals, Inc. Electron Comm Jpn Pt 3, 90(9): 1– 9, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecjc.20307

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信