具有严格外生工具的线性回归模型的一个简单而稳健的估计

IF 2.9 4区 经济学 Q1 ECONOMICS
Juan Carlos Escanciano
{"title":"具有严格外生工具的线性回归模型的一个简单而稳健的估计","authors":"Juan Carlos Escanciano","doi":"10.1111/ectj.12087","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, I investigate the estimation of linear regression models with strictly exogenous instruments under minimal identifying assumptions. I introduce a uniformly (in the data-generating process) consistent estimator under nearly minimal identifying assumptions. The proposed estimator, called the integrated instrumental variables (IIV) estimator, is a simple weighted least-squares estimator. It does not require the choice of a bandwidth or tuning parameter, or the selection of a finite set of instruments. Thus, the estimator is extremely simple to implement. Monte Carlo evidence supports the theoretical claims and suggests that the IIV estimator is a robust complement to optimal instrumental variables in finite samples. In an application with quarterly UK data, the IIV estimator estimates a positive and significant elasticity of intertemporal substitution and an equally sensible estimate for its reciprocal, in sharp contrast to instrumental variables methods that fail to identify these parameters.</p></div>","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2017-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/ectj.12087","citationCount":"16","resultStr":"{\"title\":\"A simple and robust estimator for linear regression models with strictly exogenous instruments\",\"authors\":\"Juan Carlos Escanciano\",\"doi\":\"10.1111/ectj.12087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this paper, I investigate the estimation of linear regression models with strictly exogenous instruments under minimal identifying assumptions. I introduce a uniformly (in the data-generating process) consistent estimator under nearly minimal identifying assumptions. The proposed estimator, called the integrated instrumental variables (IIV) estimator, is a simple weighted least-squares estimator. It does not require the choice of a bandwidth or tuning parameter, or the selection of a finite set of instruments. Thus, the estimator is extremely simple to implement. Monte Carlo evidence supports the theoretical claims and suggests that the IIV estimator is a robust complement to optimal instrumental variables in finite samples. In an application with quarterly UK data, the IIV estimator estimates a positive and significant elasticity of intertemporal substitution and an equally sensible estimate for its reciprocal, in sharp contrast to instrumental variables methods that fail to identify these parameters.</p></div>\",\"PeriodicalId\":50555,\"journal\":{\"name\":\"Econometrics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2017-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/ectj.12087\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics Journal\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ectj.12087\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics Journal","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ectj.12087","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 16

摘要

在本文中,我研究了在最小识别假设下,具有严格外生工具的线性回归模型的估计。在几乎最小的识别假设下,我引入了一个一致(在数据生成过程中)的一致估计器。所提出的估计量称为集成工具变量(IIV)估计量,是一种简单的加权最小二乘估计量。它不需要选择带宽或调谐参数,也不需要选择有限的仪器。因此,该估计器实现起来非常简单。蒙特卡罗证据支持了理论主张,并表明IIV估计量是有限样本中最优工具变量的稳健补充。在英国季度数据的应用中,IIV估计器估计了跨期替代的正而显著的弹性,并对其倒数进行了同样合理的估计,这与未能识别这些参数的工具变量方法形成了鲜明对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A simple and robust estimator for linear regression models with strictly exogenous instruments

In this paper, I investigate the estimation of linear regression models with strictly exogenous instruments under minimal identifying assumptions. I introduce a uniformly (in the data-generating process) consistent estimator under nearly minimal identifying assumptions. The proposed estimator, called the integrated instrumental variables (IIV) estimator, is a simple weighted least-squares estimator. It does not require the choice of a bandwidth or tuning parameter, or the selection of a finite set of instruments. Thus, the estimator is extremely simple to implement. Monte Carlo evidence supports the theoretical claims and suggests that the IIV estimator is a robust complement to optimal instrumental variables in finite samples. In an application with quarterly UK data, the IIV estimator estimates a positive and significant elasticity of intertemporal substitution and an equally sensible estimate for its reciprocal, in sharp contrast to instrumental variables methods that fail to identify these parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Econometrics Journal
Econometrics Journal 管理科学-数学跨学科应用
CiteScore
4.20
自引率
5.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Econometrics Journal was established in 1998 by the Royal Economic Society with the aim of creating a top international field journal for the publication of econometric research with a standard of intellectual rigour and academic standing similar to those of the pre-existing top field journals in econometrics. The Econometrics Journal is committed to publishing first-class papers in macro-, micro- and financial econometrics. It is a general journal for econometric research open to all areas of econometrics, whether applied, computational, methodological or theoretical contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信