短时间半参数截尾动态面板数据模型的辨识与估计

IF 2.9 4区 经济学 Q1 ECONOMICS
Yingyao Hu, Ji-Liang Shiu
{"title":"短时间半参数截尾动态面板数据模型的辨识与估计","authors":"Yingyao Hu,&nbsp;Ji-Liang Shiu","doi":"10.1111/ectj.12086","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we present a semi-parametric identification and estimation method for censored dynamic panel data models of short time periods and their average partial effects with only two periods of data. The proposed method transforms the semi-parametric specification of censored dynamic panel data models into a parametric family of distribution functions of observables without specifying the distribution of the initial condition. Then the censored dynamic panel data models are globally identified under a standard maximum likelihood estimation framework. The identifying assumptions are related to the completeness of the families of known parametric distribution functions corresponding to censored dynamic panel data models. Dynamic tobit models and two-part dynamic regression models satisfy the key assumptions. We propose a sieve maximum likelihood estimator and we investigate the finite sample properties of these sieve-based estimators using Monte Carlo analysis. Our empirical application using the Medical Expenditure Panel Survey shows that individuals consume more health care when their incomes increase, after controlling for past health expenditures.</p></div>","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2017-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/ectj.12086","citationCount":"1","resultStr":"{\"title\":\"Identification and estimation of semi-parametric censored dynamic panel data models of short time periods\",\"authors\":\"Yingyao Hu,&nbsp;Ji-Liang Shiu\",\"doi\":\"10.1111/ectj.12086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this paper, we present a semi-parametric identification and estimation method for censored dynamic panel data models of short time periods and their average partial effects with only two periods of data. The proposed method transforms the semi-parametric specification of censored dynamic panel data models into a parametric family of distribution functions of observables without specifying the distribution of the initial condition. Then the censored dynamic panel data models are globally identified under a standard maximum likelihood estimation framework. The identifying assumptions are related to the completeness of the families of known parametric distribution functions corresponding to censored dynamic panel data models. Dynamic tobit models and two-part dynamic regression models satisfy the key assumptions. We propose a sieve maximum likelihood estimator and we investigate the finite sample properties of these sieve-based estimators using Monte Carlo analysis. Our empirical application using the Medical Expenditure Panel Survey shows that individuals consume more health care when their incomes increase, after controlling for past health expenditures.</p></div>\",\"PeriodicalId\":50555,\"journal\":{\"name\":\"Econometrics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2017-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/ectj.12086\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics Journal\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ectj.12086\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics Journal","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ectj.12086","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种短时间段截尾动态面板数据模型的半参数辨识和估计方法,以及仅具有两个数据周期的平均部分效应。所提出的方法将截尾动态面板数据模型的半参数规范转换为可观察性分布函数的参数族,而不指定初始条件的分布。然后,在标准的最大似然估计框架下,对截尾动态面板数据模型进行全局识别。识别假设与截尾动态面板数据模型对应的已知参数分布函数族的完整性有关。动态tobit模型和两部分动态回归模型满足关键假设。我们提出了一个筛最大似然估计量,并使用蒙特卡罗分析研究了这些基于筛的估计量的有限样本性质。我们使用医疗支出小组调查的实证应用表明,在控制了过去的医疗支出后,当个人收入增加时,他们会消费更多的医疗保健。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification and estimation of semi-parametric censored dynamic panel data models of short time periods

In this paper, we present a semi-parametric identification and estimation method for censored dynamic panel data models of short time periods and their average partial effects with only two periods of data. The proposed method transforms the semi-parametric specification of censored dynamic panel data models into a parametric family of distribution functions of observables without specifying the distribution of the initial condition. Then the censored dynamic panel data models are globally identified under a standard maximum likelihood estimation framework. The identifying assumptions are related to the completeness of the families of known parametric distribution functions corresponding to censored dynamic panel data models. Dynamic tobit models and two-part dynamic regression models satisfy the key assumptions. We propose a sieve maximum likelihood estimator and we investigate the finite sample properties of these sieve-based estimators using Monte Carlo analysis. Our empirical application using the Medical Expenditure Panel Survey shows that individuals consume more health care when their incomes increase, after controlling for past health expenditures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Econometrics Journal
Econometrics Journal 管理科学-数学跨学科应用
CiteScore
4.20
自引率
5.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Econometrics Journal was established in 1998 by the Royal Economic Society with the aim of creating a top international field journal for the publication of econometric research with a standard of intellectual rigour and academic standing similar to those of the pre-existing top field journals in econometrics. The Econometrics Journal is committed to publishing first-class papers in macro-, micro- and financial econometrics. It is a general journal for econometric research open to all areas of econometrics, whether applied, computational, methodological or theoretical contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信