具有非平稳波动的单位根的自适应野自举检验

IF 2.9 4区 经济学 Q1 ECONOMICS
H. Peter Boswijk, Yang Zu
{"title":"具有非平稳波动的单位根的自适应野自举检验","authors":"H. Peter Boswijk,&nbsp;Yang Zu","doi":"10.1111/ectj.12100","DOIUrl":null,"url":null,"abstract":"<p>Recent research has emphasized that permanent changes in the innovation variance (caused by structural shifts or an integrated volatility process) lead to size distortions in conventional unit root tests. It has been shown how these size distortions can be resolved using the wild bootstrap. In this paper, we first derive the asymptotic power envelope for the unit root testing problem when the non-stationary volatility process is known. Next, we show that under suitable conditions, adaptation with respect to the volatility process is possible, in the sense that non-parametric estimation of the volatility process leads to the same asymptotic power envelope. Implementation of the resulting test involves cross-validation and the wild bootstrap. A Monte Carlo experiment shows that the asymptotic results are reflected in finite sample properties, and an empirical analysis of real exchange rates illustrates the applicability of the proposed procedures.</p>","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":"21 2","pages":"87-113"},"PeriodicalIF":2.9000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/ectj.12100","citationCount":"13","resultStr":"{\"title\":\"Adaptive wild bootstrap tests for a unit root with non-stationary volatility\",\"authors\":\"H. Peter Boswijk,&nbsp;Yang Zu\",\"doi\":\"10.1111/ectj.12100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent research has emphasized that permanent changes in the innovation variance (caused by structural shifts or an integrated volatility process) lead to size distortions in conventional unit root tests. It has been shown how these size distortions can be resolved using the wild bootstrap. In this paper, we first derive the asymptotic power envelope for the unit root testing problem when the non-stationary volatility process is known. Next, we show that under suitable conditions, adaptation with respect to the volatility process is possible, in the sense that non-parametric estimation of the volatility process leads to the same asymptotic power envelope. Implementation of the resulting test involves cross-validation and the wild bootstrap. A Monte Carlo experiment shows that the asymptotic results are reflected in finite sample properties, and an empirical analysis of real exchange rates illustrates the applicability of the proposed procedures.</p>\",\"PeriodicalId\":50555,\"journal\":{\"name\":\"Econometrics Journal\",\"volume\":\"21 2\",\"pages\":\"87-113\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/ectj.12100\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics Journal\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ectj.12100\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics Journal","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ectj.12100","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 13

摘要

最近的研究强调,创新方差的永久变化(由结构变化或综合波动过程引起)会导致传统单位根测试中的规模失真。已经展示了如何使用wild bootstrap来解决这些大小失真。在本文中,当非平稳波动过程已知时,我们首先推导了单位根检验问题的渐近功率包络。接下来,我们证明了在适当的条件下,关于波动过程的自适应是可能的,因为波动过程的非参数估计导致相同的渐近功率包络。结果测试的实现涉及交叉验证和野生引导。蒙特卡罗实验表明,渐近结果反映在有限样本性质中,实际汇率的实证分析表明了所提出程序的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Adaptive wild bootstrap tests for a unit root with non-stationary volatility

Adaptive wild bootstrap tests for a unit root with non-stationary volatility

Recent research has emphasized that permanent changes in the innovation variance (caused by structural shifts or an integrated volatility process) lead to size distortions in conventional unit root tests. It has been shown how these size distortions can be resolved using the wild bootstrap. In this paper, we first derive the asymptotic power envelope for the unit root testing problem when the non-stationary volatility process is known. Next, we show that under suitable conditions, adaptation with respect to the volatility process is possible, in the sense that non-parametric estimation of the volatility process leads to the same asymptotic power envelope. Implementation of the resulting test involves cross-validation and the wild bootstrap. A Monte Carlo experiment shows that the asymptotic results are reflected in finite sample properties, and an empirical analysis of real exchange rates illustrates the applicability of the proposed procedures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Econometrics Journal
Econometrics Journal 管理科学-数学跨学科应用
CiteScore
4.20
自引率
5.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Econometrics Journal was established in 1998 by the Royal Economic Society with the aim of creating a top international field journal for the publication of econometric research with a standard of intellectual rigour and academic standing similar to those of the pre-existing top field journals in econometrics. The Econometrics Journal is committed to publishing first-class papers in macro-, micro- and financial econometrics. It is a general journal for econometric research open to all areas of econometrics, whether applied, computational, methodological or theoretical contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信