{"title":"TADSRNet:一种用于超分辨率图像质量评估的三注意双尺度残差网络","authors":"Xing Quan, Kaibing Zhang, Hui Li, Dandan Fan, Yanting Hu, Jinguang Chen","doi":"10.1007/s10489-023-04932-7","DOIUrl":null,"url":null,"abstract":"<div><p>Image super-resolution (SR) has been extensively investigated in recent years. However, due to the absence of trustworthy and precise perceptual quality standards, it is challenging to objectively measure the performance of different SR approaches. In this paper, we propose a novel triple attention dual-scale residual network called TADSRNet for no-reference super-resolution image quality assessment (NR-SRIQA). Firstly, we simulate the human visual system (HVS) and construct a triple attention mechanism to acquire more significant portions of SR images through cross-dimensionality, making it simpler to identify visually sensitive regions. Then a dual-scale convolution module (DSCM) is constructed to capture quality-perceived features at different scales. Furthermore, in order to collect more informative feature representation, a residual connection is added to the network to compensate for perceptual features. Extensive experimental results demonstrate that the proposed TADSRNet can predict visual quality with greater accuracy and better consistency with human perception compared with existing IQA methods. The code will be available at https://github.com/kbzhang0505/TADSRNet.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"53 22","pages":"26708 - 26724"},"PeriodicalIF":3.4000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TADSRNet: A triple-attention dual-scale residual network for super-resolution image quality assessment\",\"authors\":\"Xing Quan, Kaibing Zhang, Hui Li, Dandan Fan, Yanting Hu, Jinguang Chen\",\"doi\":\"10.1007/s10489-023-04932-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Image super-resolution (SR) has been extensively investigated in recent years. However, due to the absence of trustworthy and precise perceptual quality standards, it is challenging to objectively measure the performance of different SR approaches. In this paper, we propose a novel triple attention dual-scale residual network called TADSRNet for no-reference super-resolution image quality assessment (NR-SRIQA). Firstly, we simulate the human visual system (HVS) and construct a triple attention mechanism to acquire more significant portions of SR images through cross-dimensionality, making it simpler to identify visually sensitive regions. Then a dual-scale convolution module (DSCM) is constructed to capture quality-perceived features at different scales. Furthermore, in order to collect more informative feature representation, a residual connection is added to the network to compensate for perceptual features. Extensive experimental results demonstrate that the proposed TADSRNet can predict visual quality with greater accuracy and better consistency with human perception compared with existing IQA methods. The code will be available at https://github.com/kbzhang0505/TADSRNet.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"53 22\",\"pages\":\"26708 - 26724\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-023-04932-7\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-023-04932-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
TADSRNet: A triple-attention dual-scale residual network for super-resolution image quality assessment
Image super-resolution (SR) has been extensively investigated in recent years. However, due to the absence of trustworthy and precise perceptual quality standards, it is challenging to objectively measure the performance of different SR approaches. In this paper, we propose a novel triple attention dual-scale residual network called TADSRNet for no-reference super-resolution image quality assessment (NR-SRIQA). Firstly, we simulate the human visual system (HVS) and construct a triple attention mechanism to acquire more significant portions of SR images through cross-dimensionality, making it simpler to identify visually sensitive regions. Then a dual-scale convolution module (DSCM) is constructed to capture quality-perceived features at different scales. Furthermore, in order to collect more informative feature representation, a residual connection is added to the network to compensate for perceptual features. Extensive experimental results demonstrate that the proposed TADSRNet can predict visual quality with greater accuracy and better consistency with human perception compared with existing IQA methods. The code will be available at https://github.com/kbzhang0505/TADSRNet.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.