{"title":"基于SimCLR的自监督学习高级植物病害图像分类","authors":"Songpol Bunyang, Natdanai Thedwichienchai, Krisna Pintong, Nuj Lael, Wuthipoom Kunaborimas, Phawit Boonrat, Thitirat Siriborvornratanakul","doi":"10.1007/s43674-023-00065-z","DOIUrl":null,"url":null,"abstract":"<div><p>Supervised learning will be a bottleneck for developing plant disease identification since it relies on learning from massive amounts of carefully labeled images, which is costly and time-consuming. On the contrary, self-supervised learning has succeeded in various image classification tasks; however, it has not been applied broadly in the plant disease analysis process. This work, therefore, studies the effectiveness of self-supervised learning using contrastive pre-training with SimCLR for plant disease image classification. We investigated unsupervised pre-training scenarios on unlabeled plant images across multiple architectures, including supervised fine-tuning on labeled samples. In addition, we explored the label efficiency of the self-supervised approach, acquired by fine-tuning the models on various fractions of labeled images. Our results demonstrated that the performance of self-supervised learning on plant disease became comparable to that of the supervised training approach.</p></div>","PeriodicalId":72089,"journal":{"name":"Advances in computational intelligence","volume":"3 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-supervised learning advanced plant disease image classification with SimCLR\",\"authors\":\"Songpol Bunyang, Natdanai Thedwichienchai, Krisna Pintong, Nuj Lael, Wuthipoom Kunaborimas, Phawit Boonrat, Thitirat Siriborvornratanakul\",\"doi\":\"10.1007/s43674-023-00065-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Supervised learning will be a bottleneck for developing plant disease identification since it relies on learning from massive amounts of carefully labeled images, which is costly and time-consuming. On the contrary, self-supervised learning has succeeded in various image classification tasks; however, it has not been applied broadly in the plant disease analysis process. This work, therefore, studies the effectiveness of self-supervised learning using contrastive pre-training with SimCLR for plant disease image classification. We investigated unsupervised pre-training scenarios on unlabeled plant images across multiple architectures, including supervised fine-tuning on labeled samples. In addition, we explored the label efficiency of the self-supervised approach, acquired by fine-tuning the models on various fractions of labeled images. Our results demonstrated that the performance of self-supervised learning on plant disease became comparable to that of the supervised training approach.</p></div>\",\"PeriodicalId\":72089,\"journal\":{\"name\":\"Advances in computational intelligence\",\"volume\":\"3 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in computational intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43674-023-00065-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in computational intelligence","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43674-023-00065-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Self-supervised learning advanced plant disease image classification with SimCLR
Supervised learning will be a bottleneck for developing plant disease identification since it relies on learning from massive amounts of carefully labeled images, which is costly and time-consuming. On the contrary, self-supervised learning has succeeded in various image classification tasks; however, it has not been applied broadly in the plant disease analysis process. This work, therefore, studies the effectiveness of self-supervised learning using contrastive pre-training with SimCLR for plant disease image classification. We investigated unsupervised pre-training scenarios on unlabeled plant images across multiple architectures, including supervised fine-tuning on labeled samples. In addition, we explored the label efficiency of the self-supervised approach, acquired by fine-tuning the models on various fractions of labeled images. Our results demonstrated that the performance of self-supervised learning on plant disease became comparable to that of the supervised training approach.