Ruichen Ming, Xiaoxiong Liu, Yu Li, Yi Yin, WeiGuo Zhang
{"title":"基于强化学习方法的飞机加减速任务变形策略","authors":"Ruichen Ming, Xiaoxiong Liu, Yu Li, Yi Yin, WeiGuo Zhang","doi":"10.1007/s10489-023-04876-y","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a design scheme for a whole morphing strategy based on the reinforcement learning (RL) method. A novel morphing aircraft is designed, and its nonlinear dynamic equations are established based on the calculated aerodynamic data. Further, a soft actor critic (SAC) approach is utilized to design the scheme, whose structure consists of the environment, the agent, and the reward function. In the environment design part, the incremental backstepping approach is employed to design the morphing aircraft controller. The safety and feasibility of deployment are verified. In the agent design part, in addition to using the entropy regularization RL algorithm, the generalization ability of the agent is enhanced in three ways: adding environmental noise, adding control command randomness, and adding output momentum terms. For the reward function, a structure with dynamic and steady-state performance is designed to accurately describe the aircraft dynamics. Finally, the designed SAC strategy is verified under the acceleration and deceleration tasks and compared with a GA and PPO strategy. Simulation results validate the effectiveness and superiority of the designed SAC scheme.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"53 22","pages":"26637 - 26654"},"PeriodicalIF":3.4000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morphing aircraft acceleration and deceleration task morphing strategy using a reinforcement learning method\",\"authors\":\"Ruichen Ming, Xiaoxiong Liu, Yu Li, Yi Yin, WeiGuo Zhang\",\"doi\":\"10.1007/s10489-023-04876-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes a design scheme for a whole morphing strategy based on the reinforcement learning (RL) method. A novel morphing aircraft is designed, and its nonlinear dynamic equations are established based on the calculated aerodynamic data. Further, a soft actor critic (SAC) approach is utilized to design the scheme, whose structure consists of the environment, the agent, and the reward function. In the environment design part, the incremental backstepping approach is employed to design the morphing aircraft controller. The safety and feasibility of deployment are verified. In the agent design part, in addition to using the entropy regularization RL algorithm, the generalization ability of the agent is enhanced in three ways: adding environmental noise, adding control command randomness, and adding output momentum terms. For the reward function, a structure with dynamic and steady-state performance is designed to accurately describe the aircraft dynamics. Finally, the designed SAC strategy is verified under the acceleration and deceleration tasks and compared with a GA and PPO strategy. Simulation results validate the effectiveness and superiority of the designed SAC scheme.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"53 22\",\"pages\":\"26637 - 26654\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-023-04876-y\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-023-04876-y","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Morphing aircraft acceleration and deceleration task morphing strategy using a reinforcement learning method
This paper proposes a design scheme for a whole morphing strategy based on the reinforcement learning (RL) method. A novel morphing aircraft is designed, and its nonlinear dynamic equations are established based on the calculated aerodynamic data. Further, a soft actor critic (SAC) approach is utilized to design the scheme, whose structure consists of the environment, the agent, and the reward function. In the environment design part, the incremental backstepping approach is employed to design the morphing aircraft controller. The safety and feasibility of deployment are verified. In the agent design part, in addition to using the entropy regularization RL algorithm, the generalization ability of the agent is enhanced in three ways: adding environmental noise, adding control command randomness, and adding output momentum terms. For the reward function, a structure with dynamic and steady-state performance is designed to accurately describe the aircraft dynamics. Finally, the designed SAC strategy is verified under the acceleration and deceleration tasks and compared with a GA and PPO strategy. Simulation results validate the effectiveness and superiority of the designed SAC scheme.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.