微温度下的高阶多孔热弹性问题

IF 4.5 2区 工程技术 Q1 MATHEMATICS, APPLIED
J. R. Fernández, R. Quintanilla
{"title":"微温度下的高阶多孔热弹性问题","authors":"J. R. Fernández,&nbsp;R. Quintanilla","doi":"10.1007/s10483-023-3049-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study a porous thermoelastic problem with microtemperatures assuming parabolic higher order in time derivatives for the thermal variables. The model is derived and written as a coupled linear system. Then, a uniqueness result is proved by using the logarithmic convexity method in the case that we do not assume that the mechanical energy is positive definite. Finally, the existence of the solution is obtained by introducing an energy function and applying the theory of linear semigroups.</p></div>","PeriodicalId":55498,"journal":{"name":"Applied Mathematics and Mechanics-English Edition","volume":"44 11","pages":"1911 - 1926"},"PeriodicalIF":4.5000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A higher-order porous thermoelastic problem with microtemperatures\",\"authors\":\"J. R. Fernández,&nbsp;R. Quintanilla\",\"doi\":\"10.1007/s10483-023-3049-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study a porous thermoelastic problem with microtemperatures assuming parabolic higher order in time derivatives for the thermal variables. The model is derived and written as a coupled linear system. Then, a uniqueness result is proved by using the logarithmic convexity method in the case that we do not assume that the mechanical energy is positive definite. Finally, the existence of the solution is obtained by introducing an energy function and applying the theory of linear semigroups.</p></div>\",\"PeriodicalId\":55498,\"journal\":{\"name\":\"Applied Mathematics and Mechanics-English Edition\",\"volume\":\"44 11\",\"pages\":\"1911 - 1926\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Mechanics-English Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10483-023-3049-8\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Mechanics-English Edition","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10483-023-3049-8","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了一个具有微温度的多孔热弹性问题,该问题在热变量的时间导数中假设为抛物型高阶。该模型被推导并写成一个耦合的线性系统。然后,在不假定机械能是正定的情况下,用对数凸性方法证明了一个唯一性结果。最后,通过引入能量函数并应用线性半群理论,得到了解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A higher-order porous thermoelastic problem with microtemperatures

In this paper, we study a porous thermoelastic problem with microtemperatures assuming parabolic higher order in time derivatives for the thermal variables. The model is derived and written as a coupled linear system. Then, a uniqueness result is proved by using the logarithmic convexity method in the case that we do not assume that the mechanical energy is positive definite. Finally, the existence of the solution is obtained by introducing an energy function and applying the theory of linear semigroups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
9.10%
发文量
106
审稿时长
2.0 months
期刊介绍: Applied Mathematics and Mechanics is the English version of a journal on applied mathematics and mechanics published in the People''s Republic of China. Our Editorial Committee, headed by Professor Chien Weizang, Ph.D., President of Shanghai University, consists of scientists in the fields of applied mathematics and mechanics from all over China. Founded by Professor Chien Weizang in 1980, Applied Mathematics and Mechanics became a bimonthly in 1981 and then a monthly in 1985. It is a comprehensive journal presenting original research papers on mechanics, mathematical methods and modeling in mechanics as well as applied mathematics relevant to neoteric mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信