用于振动抑制的几何非线性惯性仪

IF 4.5 2区 工程技术 Q1 MATHEMATICS, APPLIED
Yuyang Song, Liqun Chen, Tianzhi Yang
{"title":"用于振动抑制的几何非线性惯性仪","authors":"Yuyang Song,&nbsp;Liqun Chen,&nbsp;Tianzhi Yang","doi":"10.1007/s10483-023-3051-6","DOIUrl":null,"url":null,"abstract":"<div><p>A two-degree-of-freedom (2DOF) vibration isolation structure with an integrated geometric nonlinear inerter (NI) device is proposed. The device is integrated into an inertial nonlinear energy sink (INES), and its vibration suppression performance is examined by the Runge-Kutta (RK) method and verified by the harmonic balance method (HBM). The new isolator is compared with a traditional vibration isolator. The results show a significant improvement in the vibration suppression performance. To investigate the effects of the excitation amplitude and initial condition on the dynamics of the system, a series of transmissibility-frequency response analyses are performed based on the displacement transmissibility. The energy flow of the system is analyzed, and numerous calculations reveal a series of ideal values for the energy sink in the NI-INES system. This study provides new insights for the design of vibration isolators.</p></div>","PeriodicalId":55498,"journal":{"name":"Applied Mathematics and Mechanics-English Edition","volume":"44 11","pages":"1871 - 1886"},"PeriodicalIF":4.5000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometrically nonlinear inerter for vibration suppression\",\"authors\":\"Yuyang Song,&nbsp;Liqun Chen,&nbsp;Tianzhi Yang\",\"doi\":\"10.1007/s10483-023-3051-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A two-degree-of-freedom (2DOF) vibration isolation structure with an integrated geometric nonlinear inerter (NI) device is proposed. The device is integrated into an inertial nonlinear energy sink (INES), and its vibration suppression performance is examined by the Runge-Kutta (RK) method and verified by the harmonic balance method (HBM). The new isolator is compared with a traditional vibration isolator. The results show a significant improvement in the vibration suppression performance. To investigate the effects of the excitation amplitude and initial condition on the dynamics of the system, a series of transmissibility-frequency response analyses are performed based on the displacement transmissibility. The energy flow of the system is analyzed, and numerous calculations reveal a series of ideal values for the energy sink in the NI-INES system. This study provides new insights for the design of vibration isolators.</p></div>\",\"PeriodicalId\":55498,\"journal\":{\"name\":\"Applied Mathematics and Mechanics-English Edition\",\"volume\":\"44 11\",\"pages\":\"1871 - 1886\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Mechanics-English Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10483-023-3051-6\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Mechanics-English Edition","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10483-023-3051-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种具有集成几何非线性惯性装置的二自由度隔振结构。该装置被集成到惯性非线性能量阱(INES)中,并通过龙格-库塔(RK)法对其振动抑制性能进行了检验,并通过谐波平衡法(HBM)对其进行了验证。将新型隔振器与传统隔振器进行了比较。结果表明,振动抑制性能显著提高。为了研究激励幅度和初始条件对系统动力学的影响,基于位移传递性进行了一系列传递性频率响应分析。对系统的能量流进行了分析,大量计算揭示了NI-INES系统中能量汇的一系列理想值。这项研究为隔振器的设计提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometrically nonlinear inerter for vibration suppression

A two-degree-of-freedom (2DOF) vibration isolation structure with an integrated geometric nonlinear inerter (NI) device is proposed. The device is integrated into an inertial nonlinear energy sink (INES), and its vibration suppression performance is examined by the Runge-Kutta (RK) method and verified by the harmonic balance method (HBM). The new isolator is compared with a traditional vibration isolator. The results show a significant improvement in the vibration suppression performance. To investigate the effects of the excitation amplitude and initial condition on the dynamics of the system, a series of transmissibility-frequency response analyses are performed based on the displacement transmissibility. The energy flow of the system is analyzed, and numerous calculations reveal a series of ideal values for the energy sink in the NI-INES system. This study provides new insights for the design of vibration isolators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
9.10%
发文量
106
审稿时长
2.0 months
期刊介绍: Applied Mathematics and Mechanics is the English version of a journal on applied mathematics and mechanics published in the People''s Republic of China. Our Editorial Committee, headed by Professor Chien Weizang, Ph.D., President of Shanghai University, consists of scientists in the fields of applied mathematics and mechanics from all over China. Founded by Professor Chien Weizang in 1980, Applied Mathematics and Mechanics became a bimonthly in 1981 and then a monthly in 1985. It is a comprehensive journal presenting original research papers on mechanics, mathematical methods and modeling in mechanics as well as applied mathematics relevant to neoteric mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信