{"title":"用于振动抑制的几何非线性惯性仪","authors":"Yuyang Song, Liqun Chen, Tianzhi Yang","doi":"10.1007/s10483-023-3051-6","DOIUrl":null,"url":null,"abstract":"<div><p>A two-degree-of-freedom (2DOF) vibration isolation structure with an integrated geometric nonlinear inerter (NI) device is proposed. The device is integrated into an inertial nonlinear energy sink (INES), and its vibration suppression performance is examined by the Runge-Kutta (RK) method and verified by the harmonic balance method (HBM). The new isolator is compared with a traditional vibration isolator. The results show a significant improvement in the vibration suppression performance. To investigate the effects of the excitation amplitude and initial condition on the dynamics of the system, a series of transmissibility-frequency response analyses are performed based on the displacement transmissibility. The energy flow of the system is analyzed, and numerous calculations reveal a series of ideal values for the energy sink in the NI-INES system. This study provides new insights for the design of vibration isolators.</p></div>","PeriodicalId":55498,"journal":{"name":"Applied Mathematics and Mechanics-English Edition","volume":"44 11","pages":"1871 - 1886"},"PeriodicalIF":4.5000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometrically nonlinear inerter for vibration suppression\",\"authors\":\"Yuyang Song, Liqun Chen, Tianzhi Yang\",\"doi\":\"10.1007/s10483-023-3051-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A two-degree-of-freedom (2DOF) vibration isolation structure with an integrated geometric nonlinear inerter (NI) device is proposed. The device is integrated into an inertial nonlinear energy sink (INES), and its vibration suppression performance is examined by the Runge-Kutta (RK) method and verified by the harmonic balance method (HBM). The new isolator is compared with a traditional vibration isolator. The results show a significant improvement in the vibration suppression performance. To investigate the effects of the excitation amplitude and initial condition on the dynamics of the system, a series of transmissibility-frequency response analyses are performed based on the displacement transmissibility. The energy flow of the system is analyzed, and numerous calculations reveal a series of ideal values for the energy sink in the NI-INES system. This study provides new insights for the design of vibration isolators.</p></div>\",\"PeriodicalId\":55498,\"journal\":{\"name\":\"Applied Mathematics and Mechanics-English Edition\",\"volume\":\"44 11\",\"pages\":\"1871 - 1886\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Mechanics-English Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10483-023-3051-6\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Mechanics-English Edition","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10483-023-3051-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Geometrically nonlinear inerter for vibration suppression
A two-degree-of-freedom (2DOF) vibration isolation structure with an integrated geometric nonlinear inerter (NI) device is proposed. The device is integrated into an inertial nonlinear energy sink (INES), and its vibration suppression performance is examined by the Runge-Kutta (RK) method and verified by the harmonic balance method (HBM). The new isolator is compared with a traditional vibration isolator. The results show a significant improvement in the vibration suppression performance. To investigate the effects of the excitation amplitude and initial condition on the dynamics of the system, a series of transmissibility-frequency response analyses are performed based on the displacement transmissibility. The energy flow of the system is analyzed, and numerous calculations reveal a series of ideal values for the energy sink in the NI-INES system. This study provides new insights for the design of vibration isolators.
期刊介绍:
Applied Mathematics and Mechanics is the English version of a journal on applied mathematics and mechanics published in the People''s Republic of China. Our Editorial Committee, headed by Professor Chien Weizang, Ph.D., President of Shanghai University, consists of scientists in the fields of applied mathematics and mechanics from all over China.
Founded by Professor Chien Weizang in 1980, Applied Mathematics and Mechanics became a bimonthly in 1981 and then a monthly in 1985. It is a comprehensive journal presenting original research papers on mechanics, mathematical methods and modeling in mechanics as well as applied mathematics relevant to neoteric mechanics.