通过优化驱动的工程快捷方式实现Transmon光子纠缠

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Zhi-Bo Feng, Run-Ying Yan
{"title":"通过优化驱动的工程快捷方式实现Transmon光子纠缠","authors":"Zhi-Bo Feng,&nbsp;Run-Ying Yan","doi":"10.1007/s11128-023-04152-5","DOIUrl":null,"url":null,"abstract":"<div><p>The generation of entangled states in an optimized way is crucial to quantum information science and technology. Here, we propose an effective scheme for rapidly creating the entangled states between a transmon qubit and microwave photons by the technique of shortcuts to adiabaticity. An artificial atom of transmon circuit is coupled to a quantized resonator and a classical driving. The transmon-photon entanglement can be fast induced by inversely engineering the invariant-based Rabi drivings. Comparatively, the present scheme not only reduces the driving number but also employs the Rabi drivings with constant amplitudes. Furthermore, the operation fidelities can be enhanced due to a shorter duration time. Our work could offer an optimized avenue towards fast and robust information processing with superconducting qubits in a cavity.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"22 11","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transmon-photon entanglement by engineering shortcuts with optimized drivings\",\"authors\":\"Zhi-Bo Feng,&nbsp;Run-Ying Yan\",\"doi\":\"10.1007/s11128-023-04152-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The generation of entangled states in an optimized way is crucial to quantum information science and technology. Here, we propose an effective scheme for rapidly creating the entangled states between a transmon qubit and microwave photons by the technique of shortcuts to adiabaticity. An artificial atom of transmon circuit is coupled to a quantized resonator and a classical driving. The transmon-photon entanglement can be fast induced by inversely engineering the invariant-based Rabi drivings. Comparatively, the present scheme not only reduces the driving number but also employs the Rabi drivings with constant amplitudes. Furthermore, the operation fidelities can be enhanced due to a shorter duration time. Our work could offer an optimized avenue towards fast and robust information processing with superconducting qubits in a cavity.</p></div>\",\"PeriodicalId\":746,\"journal\":{\"name\":\"Quantum Information Processing\",\"volume\":\"22 11\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information Processing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11128-023-04152-5\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-023-04152-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

以优化的方式产生纠缠态对量子信息科学和技术至关重要。在这里,我们提出了一种有效的方案,通过绝热捷径技术快速创建传输子量子位和微波光子之间的纠缠态。transmon电路中的人造原子被耦合到量化谐振器和经典驱动。通过反向工程基于不变量的拉比驱动,可以快速诱导transmon光子纠缠。相比之下,本方案不仅减少了驱动次数,而且采用了具有恒定振幅的拉比驱动。此外,由于持续时间较短,可以提高操作的可信度。我们的工作可以为在腔中使用超导量子位进行快速、稳健的信息处理提供一条优化的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Transmon-photon entanglement by engineering shortcuts with optimized drivings

Transmon-photon entanglement by engineering shortcuts with optimized drivings

The generation of entangled states in an optimized way is crucial to quantum information science and technology. Here, we propose an effective scheme for rapidly creating the entangled states between a transmon qubit and microwave photons by the technique of shortcuts to adiabaticity. An artificial atom of transmon circuit is coupled to a quantized resonator and a classical driving. The transmon-photon entanglement can be fast induced by inversely engineering the invariant-based Rabi drivings. Comparatively, the present scheme not only reduces the driving number but also employs the Rabi drivings with constant amplitudes. Furthermore, the operation fidelities can be enhanced due to a shorter duration time. Our work could offer an optimized avenue towards fast and robust information processing with superconducting qubits in a cavity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信