评估污水污泥中的金属污染和物种形成:对土壤应用和环境风险的影响

IF 8.6 1区 环境科学与生态学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jianting Feng, Ian T. Burke, Xiaohui Chen, Douglas I. Stewart
{"title":"评估污水污泥中的金属污染和物种形成:对土壤应用和环境风险的影响","authors":"Jianting Feng,&nbsp;Ian T. Burke,&nbsp;Xiaohui Chen,&nbsp;Douglas I. Stewart","doi":"10.1007/s11157-023-09675-y","DOIUrl":null,"url":null,"abstract":"<div><p>Based on the most recently published data, we definitively estimated that the annual global production of sewage sludge may rise from ~ 53 million tons dry solids currently to ~ 160 million tons if global wastewater were to be treated to a similar level as in the 27 European Union countries/UK. It is widely accepted that the agricultural application is a beneficial way to recycle the abundant organic matter and plant nutrients in sewage sludge. However, land application may need to be limited due to the presence of metals. This work presents a meticulous and systematic review of the sources, concentrations, partitioning, and speciation of metals in sewage sludge in order to determine the impacts of sludge application on metal behavior in soils. It identifies that industrial wastewater, domestic wastewater and urban runoff are main sources of metals in sludge. It shows conventional treatment processes generally result in the partitioning of over 70% of metals from wastewater into primary and secondary sludge. Typically, the order of metal concentrations in sewage sludge is Zn &gt; Cu &gt; Cr ≈ Pb ≈ Ni &gt; Cd. The proportion of these metals that are easily mobilised is highest for Zn and Ni, followed by Cd and Cu, then Pb and Cr. Sludge application to land will lead to elevated metal concentrations, and potentially to short-term changes to the dominant metal species in soils. However, the speciation of sludge-associated metals will change over time due to interactions with plant roots and soil minerals and as organic matter is mineralised by rhizo-microbiome.</p></div>","PeriodicalId":754,"journal":{"name":"Reviews in Environmental Science and Bio/Technology","volume":"22 4","pages":"1037 - 1058"},"PeriodicalIF":8.6000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Assessing metal contamination and speciation in sewage sludge: implications for soil application and environmental risk\",\"authors\":\"Jianting Feng,&nbsp;Ian T. Burke,&nbsp;Xiaohui Chen,&nbsp;Douglas I. Stewart\",\"doi\":\"10.1007/s11157-023-09675-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Based on the most recently published data, we definitively estimated that the annual global production of sewage sludge may rise from ~ 53 million tons dry solids currently to ~ 160 million tons if global wastewater were to be treated to a similar level as in the 27 European Union countries/UK. It is widely accepted that the agricultural application is a beneficial way to recycle the abundant organic matter and plant nutrients in sewage sludge. However, land application may need to be limited due to the presence of metals. This work presents a meticulous and systematic review of the sources, concentrations, partitioning, and speciation of metals in sewage sludge in order to determine the impacts of sludge application on metal behavior in soils. It identifies that industrial wastewater, domestic wastewater and urban runoff are main sources of metals in sludge. It shows conventional treatment processes generally result in the partitioning of over 70% of metals from wastewater into primary and secondary sludge. Typically, the order of metal concentrations in sewage sludge is Zn &gt; Cu &gt; Cr ≈ Pb ≈ Ni &gt; Cd. The proportion of these metals that are easily mobilised is highest for Zn and Ni, followed by Cd and Cu, then Pb and Cr. Sludge application to land will lead to elevated metal concentrations, and potentially to short-term changes to the dominant metal species in soils. However, the speciation of sludge-associated metals will change over time due to interactions with plant roots and soil minerals and as organic matter is mineralised by rhizo-microbiome.</p></div>\",\"PeriodicalId\":754,\"journal\":{\"name\":\"Reviews in Environmental Science and Bio/Technology\",\"volume\":\"22 4\",\"pages\":\"1037 - 1058\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Environmental Science and Bio/Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11157-023-09675-y\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Environmental Science and Bio/Technology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11157-023-09675-y","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

根据最近公布的数据,我们明确估计,如果将全球废水处理到与27个欧盟国家/英国类似的水平,全球污泥的年产量可能会从目前的约5300万吨干固体增加到约1.6亿吨。人们普遍认为,农业应用是回收污泥中丰富的有机物和植物营养物质的有益途径。然而,由于金属的存在,土地应用可能需要受到限制。这项工作对污水污泥中金属的来源、浓度、分配和形态进行了细致而系统的综述,以确定污泥施用对土壤中金属行为的影响。指出工业废水、生活污水和城市径流是污泥中金属的主要来源。它表明,传统的处理工艺通常会将废水中70%以上的金属分配到一级和二级污泥中。通常,污水污泥中金属浓度的顺序是Zn>;Cu>;Cr≈Pb≈Ni>;Cd。锌和镍容易迁移的金属比例最高,其次是镉和铜,然后是铅和铬。污泥施用到土地上会导致金属浓度升高,并可能导致土壤中主要金属物种的短期变化。然而,由于与植物根系和土壤矿物的相互作用,以及有机物被根系微生物组矿化,污泥相关金属的形态将随着时间的推移而变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Assessing metal contamination and speciation in sewage sludge: implications for soil application and environmental risk

Assessing metal contamination and speciation in sewage sludge: implications for soil application and environmental risk

Based on the most recently published data, we definitively estimated that the annual global production of sewage sludge may rise from ~ 53 million tons dry solids currently to ~ 160 million tons if global wastewater were to be treated to a similar level as in the 27 European Union countries/UK. It is widely accepted that the agricultural application is a beneficial way to recycle the abundant organic matter and plant nutrients in sewage sludge. However, land application may need to be limited due to the presence of metals. This work presents a meticulous and systematic review of the sources, concentrations, partitioning, and speciation of metals in sewage sludge in order to determine the impacts of sludge application on metal behavior in soils. It identifies that industrial wastewater, domestic wastewater and urban runoff are main sources of metals in sludge. It shows conventional treatment processes generally result in the partitioning of over 70% of metals from wastewater into primary and secondary sludge. Typically, the order of metal concentrations in sewage sludge is Zn > Cu > Cr ≈ Pb ≈ Ni > Cd. The proportion of these metals that are easily mobilised is highest for Zn and Ni, followed by Cd and Cu, then Pb and Cr. Sludge application to land will lead to elevated metal concentrations, and potentially to short-term changes to the dominant metal species in soils. However, the speciation of sludge-associated metals will change over time due to interactions with plant roots and soil minerals and as organic matter is mineralised by rhizo-microbiome.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews in Environmental Science and Bio/Technology
Reviews in Environmental Science and Bio/Technology Environmental Science-Waste Management and Disposal
CiteScore
25.00
自引率
1.40%
发文量
37
审稿时长
4.5 months
期刊介绍: Reviews in Environmental Science and Bio/Technology is a publication that offers easily comprehensible, reliable, and well-rounded perspectives and evaluations in the realm of environmental science and (bio)technology. It disseminates the most recent progressions and timely compilations of groundbreaking scientific discoveries, technological advancements, practical applications, policy developments, and societal concerns encompassing all facets of environmental science and (bio)technology. Furthermore, it tackles broader aspects beyond the natural sciences, incorporating subjects such as education, funding, policy-making, intellectual property, and societal influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信