“不利”的环境影响也可能是有益的:基于隐式控制的类蜈蚣群体机器人在未知环境中导航和探索的仿真分析

IF 0.8 Q4 ROBOTICS
Runze Xiao, Yusuke Tsunoda, Koichi Osuka
{"title":"“不利”的环境影响也可能是有益的:基于隐式控制的类蜈蚣群体机器人在未知环境中导航和探索的仿真分析","authors":"Runze Xiao,&nbsp;Yusuke Tsunoda,&nbsp;Koichi Osuka","doi":"10.1007/s10015-023-00907-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we propose a centipede-like swarm robotic system capable of utilizing “unfavorable” environmental effects such as robot–environment collisions, robot–robot collisions, signal noise, and signal interval, to aid navigation and exploration in 2D unknown environments. Traditional swarm robots demand complex systems to counteract “unfavorable” environmental effects, making the design of robots to handle unknown environments with theoretical infinite possibilities exceedingly challenging. In contrast, our approach does not view these “unfavorable” environmental effects as foes to be combated, but instead employs strategies like implicit control to convert them into beneficial influences on the task. This simplifies the swarm robot system, enabling navigation and exploration with only goal direction as the single input, eliminating the need for inter-robot observation, inter-robot communication and obstacle detection. Finally, we validate our system’s effectiveness through simulations in the CoppeliaSim environment, demonstrating the benefits of “unfavorable” environmental effects and the method’s universal applicability.</p></div>","PeriodicalId":46050,"journal":{"name":"Artificial Life and Robotics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"“Unfavorable” environmental effects can also be beneficial: a simulation analysis of centipede-like swarm robots based on implicit control for navigation and exploration in unknown environments\",\"authors\":\"Runze Xiao,&nbsp;Yusuke Tsunoda,&nbsp;Koichi Osuka\",\"doi\":\"10.1007/s10015-023-00907-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we propose a centipede-like swarm robotic system capable of utilizing “unfavorable” environmental effects such as robot–environment collisions, robot–robot collisions, signal noise, and signal interval, to aid navigation and exploration in 2D unknown environments. Traditional swarm robots demand complex systems to counteract “unfavorable” environmental effects, making the design of robots to handle unknown environments with theoretical infinite possibilities exceedingly challenging. In contrast, our approach does not view these “unfavorable” environmental effects as foes to be combated, but instead employs strategies like implicit control to convert them into beneficial influences on the task. This simplifies the swarm robot system, enabling navigation and exploration with only goal direction as the single input, eliminating the need for inter-robot observation, inter-robot communication and obstacle detection. Finally, we validate our system’s effectiveness through simulations in the CoppeliaSim environment, demonstrating the benefits of “unfavorable” environmental effects and the method’s universal applicability.</p></div>\",\"PeriodicalId\":46050,\"journal\":{\"name\":\"Artificial Life and Robotics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Life and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10015-023-00907-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10015-023-00907-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们提出了一种类似蜈蚣的群体机器人系统,该系统能够利用“不利”的环境影响,如机器人-环境碰撞、机器人-机器人碰撞、信号噪声和信号间隔,来帮助在2D未知环境中进行导航和探索。传统的群体机器人需要复杂的系统来抵消“不利”的环境影响,这使得机器人处理理论上无限可能的未知环境的设计极具挑战性。相比之下,我们的方法并没有将这些“不利”的环境影响视为需要对抗的敌人,而是采用了隐性控制等策略,将其转化为对任务的有益影响。这简化了群体机器人系统,实现了仅以目标方向为单一输入的导航和探索,消除了机器人间观察、机器人间通信和障碍物检测的需要。最后,我们通过在CoppeliaSim环境中的模拟验证了我们的系统的有效性,证明了“不利”环境影响的好处和该方法的普遍适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
“Unfavorable” environmental effects can also be beneficial: a simulation analysis of centipede-like swarm robots based on implicit control for navigation and exploration in unknown environments

In this study, we propose a centipede-like swarm robotic system capable of utilizing “unfavorable” environmental effects such as robot–environment collisions, robot–robot collisions, signal noise, and signal interval, to aid navigation and exploration in 2D unknown environments. Traditional swarm robots demand complex systems to counteract “unfavorable” environmental effects, making the design of robots to handle unknown environments with theoretical infinite possibilities exceedingly challenging. In contrast, our approach does not view these “unfavorable” environmental effects as foes to be combated, but instead employs strategies like implicit control to convert them into beneficial influences on the task. This simplifies the swarm robot system, enabling navigation and exploration with only goal direction as the single input, eliminating the need for inter-robot observation, inter-robot communication and obstacle detection. Finally, we validate our system’s effectiveness through simulations in the CoppeliaSim environment, demonstrating the benefits of “unfavorable” environmental effects and the method’s universal applicability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
22.20%
发文量
101
期刊介绍: Artificial Life and Robotics is an international journal publishing original technical papers and authoritative state-of-the-art reviews on the development of new technologies concerning artificial life and robotics, especially computer-based simulation and hardware for the twenty-first century. This journal covers a broad multidisciplinary field, including areas such as artificial brain research, artificial intelligence, artificial life, artificial living, artificial mind research, brain science, chaos, cognitive science, complexity, computer graphics, evolutionary computations, fuzzy control, genetic algorithms, innovative computations, intelligent control and modelling, micromachines, micro-robot world cup soccer tournament, mobile vehicles, neural networks, neurocomputers, neurocomputing technologies and applications, robotics, robus virtual engineering, and virtual reality. Hardware-oriented submissions are particularly welcome. Publishing body: International Symposium on Artificial Life and RoboticsEditor-in-Chiei: Hiroshi Tanaka Hatanaka R Apartment 101, Hatanaka 8-7A, Ooaza-Hatanaka, Oita city, Oita, Japan 870-0856 ©International Symposium on Artificial Life and Robotics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信