N. R. Caetano, B. P. da Silva, A. C. Ruoso, A. G. Avila, L. A. O. Rocha, G. Lorenzini
{"title":"基于废气再循环和热再生工艺的柴火锅炉能量回收","authors":"N. R. Caetano, B. P. da Silva, A. C. Ruoso, A. G. Avila, L. A. O. Rocha, G. Lorenzini","doi":"10.1134/S1810232823030062","DOIUrl":null,"url":null,"abstract":"<p>This research investigated the exhaust gas recirculation (EGR) process to recover part of the thermal and chemical energy left in the exhaust boiler stream. A theoretical energy conversion and use analysis was performed based on a small boiler. Several measurements and analyses of the operation reports provided the boundary conditions and relevant information for modelling the processes. The methodology considered the radiation from exhaust gases, thermodynamics balances, and financial engineering calculations for the energy recovery analysis. Financial results indicate that the exhaust gas recirculation process implementation, regarding 20% of the EGR ratio, presented 69% and 1.45 years of internal returning rate and payback, respectively. However, the regenerative process presented an internal returning rate and payback values of 112% and 0.9 years. Indeed, both processes might be applied in order to increase efficiency and reduce emissions.</p>","PeriodicalId":627,"journal":{"name":"Journal of Engineering Thermophysics","volume":"32 3","pages":"482 - 501"},"PeriodicalIF":1.3000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy Recovery Based on Exhaust Gas Recirculation and Heat Regeneration Processes Applied in a Firewood Boiler\",\"authors\":\"N. R. Caetano, B. P. da Silva, A. C. Ruoso, A. G. Avila, L. A. O. Rocha, G. Lorenzini\",\"doi\":\"10.1134/S1810232823030062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This research investigated the exhaust gas recirculation (EGR) process to recover part of the thermal and chemical energy left in the exhaust boiler stream. A theoretical energy conversion and use analysis was performed based on a small boiler. Several measurements and analyses of the operation reports provided the boundary conditions and relevant information for modelling the processes. The methodology considered the radiation from exhaust gases, thermodynamics balances, and financial engineering calculations for the energy recovery analysis. Financial results indicate that the exhaust gas recirculation process implementation, regarding 20% of the EGR ratio, presented 69% and 1.45 years of internal returning rate and payback, respectively. However, the regenerative process presented an internal returning rate and payback values of 112% and 0.9 years. Indeed, both processes might be applied in order to increase efficiency and reduce emissions.</p>\",\"PeriodicalId\":627,\"journal\":{\"name\":\"Journal of Engineering Thermophysics\",\"volume\":\"32 3\",\"pages\":\"482 - 501\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Thermophysics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1810232823030062\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1810232823030062","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Energy Recovery Based on Exhaust Gas Recirculation and Heat Regeneration Processes Applied in a Firewood Boiler
This research investigated the exhaust gas recirculation (EGR) process to recover part of the thermal and chemical energy left in the exhaust boiler stream. A theoretical energy conversion and use analysis was performed based on a small boiler. Several measurements and analyses of the operation reports provided the boundary conditions and relevant information for modelling the processes. The methodology considered the radiation from exhaust gases, thermodynamics balances, and financial engineering calculations for the energy recovery analysis. Financial results indicate that the exhaust gas recirculation process implementation, regarding 20% of the EGR ratio, presented 69% and 1.45 years of internal returning rate and payback, respectively. However, the regenerative process presented an internal returning rate and payback values of 112% and 0.9 years. Indeed, both processes might be applied in order to increase efficiency and reduce emissions.
期刊介绍:
Journal of Engineering Thermophysics is an international peer reviewed journal that publishes original articles. The journal welcomes original articles on thermophysics from all countries in the English language. The journal focuses on experimental work, theory, analysis, and computational studies for better understanding of engineering and environmental aspects of thermophysics. The editorial board encourages the authors to submit papers with emphasis on new scientific aspects in experimental and visualization techniques, mathematical models of thermophysical process, energy, and environmental applications. Journal of Engineering Thermophysics covers all subject matter related to thermophysics, including heat and mass transfer, multiphase flow, conduction, radiation, combustion, thermo-gas dynamics, rarefied gas flow, environmental protection in power engineering, and many others.