不同直径直管GO–DW纳米流体实验热系统的熵和火用分析

IF 1.3 4区 工程技术 Q3 ENGINEERING, MECHANICAL
N. Ocak, K. Karabulut
{"title":"不同直径直管GO–DW纳米流体实验热系统的熵和火用分析","authors":"N. Ocak,&nbsp;K. Karabulut","doi":"10.1134/S1810232823030177","DOIUrl":null,"url":null,"abstract":"<p>Entropy and exergy analysis of a thermal system are the most powerful tools that can be employed to specify the optimum operating conditions of that system and utilization rate from the system. In the experimental thermal system in this work, entropy generation and exergy analyzes of GO–DW nanofluids have been carried out in straight copper pipes with constant heat load and 8 mm and 16 mm inner diameters. While the heat loads applied to the pipes are 250 W and 350 W, the range of fluid flow rate values in the pipes is 0.9 l/min–1.8 l/min. GO–DW nanofluids with 0.01% and 0.02% volumetric concentrations and DW have been used as working fluids in the pipes. The outcomes acquired from this work have been matched with the studies using different nanofluids in the literature and it has been noticed that the outcomes are reasonable and consistent. The results of the study have been presented at different GO–DW nanofluid concentrations in pipes with 8 mm and 16 mm inner diameters as thermal, friction and total entropy production, output exergy ratio and 2nd law efficiency. The obtained outcomes have exhibited that the lowest total entropy generation has been obtained for the 8 mm diameter pipe and the nanofluid with 0.02% GO–DW concentration. Besides, 2nd law efficiency is 12% higher for the 8 mm diameter pipe than 16 mm at flow rate of 1.2 l/min and 0.02% GO–DW nanofluid, and 350 W heat load.</p>","PeriodicalId":627,"journal":{"name":"Journal of Engineering Thermophysics","volume":"32 3","pages":"637 - 655"},"PeriodicalIF":1.3000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy and Exergy Analysis in an Experimental Thermal System Used GO–DW Nanofluid Having Straight Copper Pipes with Different Diameters\",\"authors\":\"N. Ocak,&nbsp;K. Karabulut\",\"doi\":\"10.1134/S1810232823030177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Entropy and exergy analysis of a thermal system are the most powerful tools that can be employed to specify the optimum operating conditions of that system and utilization rate from the system. In the experimental thermal system in this work, entropy generation and exergy analyzes of GO–DW nanofluids have been carried out in straight copper pipes with constant heat load and 8 mm and 16 mm inner diameters. While the heat loads applied to the pipes are 250 W and 350 W, the range of fluid flow rate values in the pipes is 0.9 l/min–1.8 l/min. GO–DW nanofluids with 0.01% and 0.02% volumetric concentrations and DW have been used as working fluids in the pipes. The outcomes acquired from this work have been matched with the studies using different nanofluids in the literature and it has been noticed that the outcomes are reasonable and consistent. The results of the study have been presented at different GO–DW nanofluid concentrations in pipes with 8 mm and 16 mm inner diameters as thermal, friction and total entropy production, output exergy ratio and 2nd law efficiency. The obtained outcomes have exhibited that the lowest total entropy generation has been obtained for the 8 mm diameter pipe and the nanofluid with 0.02% GO–DW concentration. Besides, 2nd law efficiency is 12% higher for the 8 mm diameter pipe than 16 mm at flow rate of 1.2 l/min and 0.02% GO–DW nanofluid, and 350 W heat load.</p>\",\"PeriodicalId\":627,\"journal\":{\"name\":\"Journal of Engineering Thermophysics\",\"volume\":\"32 3\",\"pages\":\"637 - 655\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Thermophysics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1810232823030177\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1810232823030177","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

热力系统的熵和火用分析是最有力的工具,可以用来指定该系统的最佳运行条件和系统的利用率。在本工作的实验热系统中,对GO–DW纳米流体在具有恒定热负荷和8mm和16mm内径的直管中进行了熵产生和火用分析。虽然施加在管道上的热负荷为250 W和350 W,但管道中的流体流速值范围为0.9 l/min–1.8 l/min。具有0.01%和0.02%体积浓度的GO–DW纳米流体和DW已被用作管道中的工作流体。从这项工作中获得的结果与文献中使用不同纳米流体的研究相匹配,并注意到结果是合理和一致的。研究结果显示,在内径为8 mm和16 mm的管道中,不同GO–DW纳米流体浓度下,热、摩擦和总熵产生、输出火用比和第二定律效率。所获得的结果表明,直径为8mm的管道和GO–DW浓度为0.02%的纳米流体的总熵生成最低。此外,在1.2 l/min的流速和0.02%GO–DW纳米流体以及350 W的热负荷下,直径为8 mm的管道的第二定律效率比16 mm高12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Entropy and Exergy Analysis in an Experimental Thermal System Used GO–DW Nanofluid Having Straight Copper Pipes with Different Diameters

Entropy and Exergy Analysis in an Experimental Thermal System Used GO–DW Nanofluid Having Straight Copper Pipes with Different Diameters

Entropy and exergy analysis of a thermal system are the most powerful tools that can be employed to specify the optimum operating conditions of that system and utilization rate from the system. In the experimental thermal system in this work, entropy generation and exergy analyzes of GO–DW nanofluids have been carried out in straight copper pipes with constant heat load and 8 mm and 16 mm inner diameters. While the heat loads applied to the pipes are 250 W and 350 W, the range of fluid flow rate values in the pipes is 0.9 l/min–1.8 l/min. GO–DW nanofluids with 0.01% and 0.02% volumetric concentrations and DW have been used as working fluids in the pipes. The outcomes acquired from this work have been matched with the studies using different nanofluids in the literature and it has been noticed that the outcomes are reasonable and consistent. The results of the study have been presented at different GO–DW nanofluid concentrations in pipes with 8 mm and 16 mm inner diameters as thermal, friction and total entropy production, output exergy ratio and 2nd law efficiency. The obtained outcomes have exhibited that the lowest total entropy generation has been obtained for the 8 mm diameter pipe and the nanofluid with 0.02% GO–DW concentration. Besides, 2nd law efficiency is 12% higher for the 8 mm diameter pipe than 16 mm at flow rate of 1.2 l/min and 0.02% GO–DW nanofluid, and 350 W heat load.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Engineering Thermophysics
Journal of Engineering Thermophysics THERMODYNAMICS-ENGINEERING, MECHANICAL
CiteScore
2.30
自引率
12.50%
发文量
0
审稿时长
3 months
期刊介绍: Journal of Engineering Thermophysics is an international peer reviewed journal that publishes original articles. The journal welcomes original articles on thermophysics from all countries in the English language. The journal focuses on experimental work, theory, analysis, and computational studies for better understanding of engineering and environmental aspects of thermophysics. The editorial board encourages the authors to submit papers with emphasis on new scientific aspects in experimental and visualization techniques, mathematical models of thermophysical process, energy, and environmental applications. Journal of Engineering Thermophysics covers all subject matter related to thermophysics, including heat and mass transfer, multiphase flow, conduction, radiation, combustion, thermo-gas dynamics, rarefied gas flow, environmental protection in power engineering, and many others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信