{"title":"不同直径直管GO–DW纳米流体实验热系统的熵和火用分析","authors":"N. Ocak, K. Karabulut","doi":"10.1134/S1810232823030177","DOIUrl":null,"url":null,"abstract":"<p>Entropy and exergy analysis of a thermal system are the most powerful tools that can be employed to specify the optimum operating conditions of that system and utilization rate from the system. In the experimental thermal system in this work, entropy generation and exergy analyzes of GO–DW nanofluids have been carried out in straight copper pipes with constant heat load and 8 mm and 16 mm inner diameters. While the heat loads applied to the pipes are 250 W and 350 W, the range of fluid flow rate values in the pipes is 0.9 l/min–1.8 l/min. GO–DW nanofluids with 0.01% and 0.02% volumetric concentrations and DW have been used as working fluids in the pipes. The outcomes acquired from this work have been matched with the studies using different nanofluids in the literature and it has been noticed that the outcomes are reasonable and consistent. The results of the study have been presented at different GO–DW nanofluid concentrations in pipes with 8 mm and 16 mm inner diameters as thermal, friction and total entropy production, output exergy ratio and 2nd law efficiency. The obtained outcomes have exhibited that the lowest total entropy generation has been obtained for the 8 mm diameter pipe and the nanofluid with 0.02% GO–DW concentration. Besides, 2nd law efficiency is 12% higher for the 8 mm diameter pipe than 16 mm at flow rate of 1.2 l/min and 0.02% GO–DW nanofluid, and 350 W heat load.</p>","PeriodicalId":627,"journal":{"name":"Journal of Engineering Thermophysics","volume":"32 3","pages":"637 - 655"},"PeriodicalIF":1.3000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy and Exergy Analysis in an Experimental Thermal System Used GO–DW Nanofluid Having Straight Copper Pipes with Different Diameters\",\"authors\":\"N. Ocak, K. Karabulut\",\"doi\":\"10.1134/S1810232823030177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Entropy and exergy analysis of a thermal system are the most powerful tools that can be employed to specify the optimum operating conditions of that system and utilization rate from the system. In the experimental thermal system in this work, entropy generation and exergy analyzes of GO–DW nanofluids have been carried out in straight copper pipes with constant heat load and 8 mm and 16 mm inner diameters. While the heat loads applied to the pipes are 250 W and 350 W, the range of fluid flow rate values in the pipes is 0.9 l/min–1.8 l/min. GO–DW nanofluids with 0.01% and 0.02% volumetric concentrations and DW have been used as working fluids in the pipes. The outcomes acquired from this work have been matched with the studies using different nanofluids in the literature and it has been noticed that the outcomes are reasonable and consistent. The results of the study have been presented at different GO–DW nanofluid concentrations in pipes with 8 mm and 16 mm inner diameters as thermal, friction and total entropy production, output exergy ratio and 2nd law efficiency. The obtained outcomes have exhibited that the lowest total entropy generation has been obtained for the 8 mm diameter pipe and the nanofluid with 0.02% GO–DW concentration. Besides, 2nd law efficiency is 12% higher for the 8 mm diameter pipe than 16 mm at flow rate of 1.2 l/min and 0.02% GO–DW nanofluid, and 350 W heat load.</p>\",\"PeriodicalId\":627,\"journal\":{\"name\":\"Journal of Engineering Thermophysics\",\"volume\":\"32 3\",\"pages\":\"637 - 655\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Thermophysics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1810232823030177\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1810232823030177","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Entropy and Exergy Analysis in an Experimental Thermal System Used GO–DW Nanofluid Having Straight Copper Pipes with Different Diameters
Entropy and exergy analysis of a thermal system are the most powerful tools that can be employed to specify the optimum operating conditions of that system and utilization rate from the system. In the experimental thermal system in this work, entropy generation and exergy analyzes of GO–DW nanofluids have been carried out in straight copper pipes with constant heat load and 8 mm and 16 mm inner diameters. While the heat loads applied to the pipes are 250 W and 350 W, the range of fluid flow rate values in the pipes is 0.9 l/min–1.8 l/min. GO–DW nanofluids with 0.01% and 0.02% volumetric concentrations and DW have been used as working fluids in the pipes. The outcomes acquired from this work have been matched with the studies using different nanofluids in the literature and it has been noticed that the outcomes are reasonable and consistent. The results of the study have been presented at different GO–DW nanofluid concentrations in pipes with 8 mm and 16 mm inner diameters as thermal, friction and total entropy production, output exergy ratio and 2nd law efficiency. The obtained outcomes have exhibited that the lowest total entropy generation has been obtained for the 8 mm diameter pipe and the nanofluid with 0.02% GO–DW concentration. Besides, 2nd law efficiency is 12% higher for the 8 mm diameter pipe than 16 mm at flow rate of 1.2 l/min and 0.02% GO–DW nanofluid, and 350 W heat load.
期刊介绍:
Journal of Engineering Thermophysics is an international peer reviewed journal that publishes original articles. The journal welcomes original articles on thermophysics from all countries in the English language. The journal focuses on experimental work, theory, analysis, and computational studies for better understanding of engineering and environmental aspects of thermophysics. The editorial board encourages the authors to submit papers with emphasis on new scientific aspects in experimental and visualization techniques, mathematical models of thermophysical process, energy, and environmental applications. Journal of Engineering Thermophysics covers all subject matter related to thermophysics, including heat and mass transfer, multiphase flow, conduction, radiation, combustion, thermo-gas dynamics, rarefied gas flow, environmental protection in power engineering, and many others.