P. V. Domarov, V. A. Serikov, A. E. Morev, O. S. Cherednichenko
{"title":"空心阴极真空等离子体激元:空心阴极中的气体动力学等离子体过程","authors":"P. V. Domarov, V. A. Serikov, A. E. Morev, O. S. Cherednichenko","doi":"10.1134/S1810232823030153","DOIUrl":null,"url":null,"abstract":"<p>It is shown that it is necessary for vacuum plasmatron with hollow cathode to meet the technical requirements to the hollow cathode pipeline to provide not only the necessary kinetic energy of the gas involved in the formation of working parameters in the cavity cathode but also to ensure the stable operation conditions for vacuum plasmatron at large current without the occurrence of high-frequency oscillations in the plasmatron electrical circuit. The pipeline maximum length has been established, guaranteeing the speed of gas at its final section and equals to the speed of sound at the output; the results of mathematical modeling and experimental investigated parameters for developing gas-dynamic processes in hollow cold and hot cathodes of vacuum plasmatrons are presented. The start-up modes ranges for warming up the cavity cathode and continuous discharge output with hollow cathode into working modes with flowing currents up to 10000 A are considered. The occurrence and development of the gradient pressure, density, velocity mass flow rate at heating the cathode and the gradient increase temperature effect of the cathode edge with forming current conductivity active zone in the cylindrical cathode are shown.</p>","PeriodicalId":627,"journal":{"name":"Journal of Engineering Thermophysics","volume":"32 3","pages":"603 - 626"},"PeriodicalIF":1.3000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vacuum Plasmatrons with Hollow Cathode: Gas-Dynamic Plasma Processes in the Hollow Cathode\",\"authors\":\"P. V. Domarov, V. A. Serikov, A. E. Morev, O. S. Cherednichenko\",\"doi\":\"10.1134/S1810232823030153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is shown that it is necessary for vacuum plasmatron with hollow cathode to meet the technical requirements to the hollow cathode pipeline to provide not only the necessary kinetic energy of the gas involved in the formation of working parameters in the cavity cathode but also to ensure the stable operation conditions for vacuum plasmatron at large current without the occurrence of high-frequency oscillations in the plasmatron electrical circuit. The pipeline maximum length has been established, guaranteeing the speed of gas at its final section and equals to the speed of sound at the output; the results of mathematical modeling and experimental investigated parameters for developing gas-dynamic processes in hollow cold and hot cathodes of vacuum plasmatrons are presented. The start-up modes ranges for warming up the cavity cathode and continuous discharge output with hollow cathode into working modes with flowing currents up to 10000 A are considered. The occurrence and development of the gradient pressure, density, velocity mass flow rate at heating the cathode and the gradient increase temperature effect of the cathode edge with forming current conductivity active zone in the cylindrical cathode are shown.</p>\",\"PeriodicalId\":627,\"journal\":{\"name\":\"Journal of Engineering Thermophysics\",\"volume\":\"32 3\",\"pages\":\"603 - 626\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Thermophysics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1810232823030153\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1810232823030153","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Vacuum Plasmatrons with Hollow Cathode: Gas-Dynamic Plasma Processes in the Hollow Cathode
It is shown that it is necessary for vacuum plasmatron with hollow cathode to meet the technical requirements to the hollow cathode pipeline to provide not only the necessary kinetic energy of the gas involved in the formation of working parameters in the cavity cathode but also to ensure the stable operation conditions for vacuum plasmatron at large current without the occurrence of high-frequency oscillations in the plasmatron electrical circuit. The pipeline maximum length has been established, guaranteeing the speed of gas at its final section and equals to the speed of sound at the output; the results of mathematical modeling and experimental investigated parameters for developing gas-dynamic processes in hollow cold and hot cathodes of vacuum plasmatrons are presented. The start-up modes ranges for warming up the cavity cathode and continuous discharge output with hollow cathode into working modes with flowing currents up to 10000 A are considered. The occurrence and development of the gradient pressure, density, velocity mass flow rate at heating the cathode and the gradient increase temperature effect of the cathode edge with forming current conductivity active zone in the cylindrical cathode are shown.
期刊介绍:
Journal of Engineering Thermophysics is an international peer reviewed journal that publishes original articles. The journal welcomes original articles on thermophysics from all countries in the English language. The journal focuses on experimental work, theory, analysis, and computational studies for better understanding of engineering and environmental aspects of thermophysics. The editorial board encourages the authors to submit papers with emphasis on new scientific aspects in experimental and visualization techniques, mathematical models of thermophysical process, energy, and environmental applications. Journal of Engineering Thermophysics covers all subject matter related to thermophysics, including heat and mass transfer, multiphase flow, conduction, radiation, combustion, thermo-gas dynamics, rarefied gas flow, environmental protection in power engineering, and many others.