{"title":"多分辨率集成预测编码递归自动编码器在多变量时间序列异常检测中的应用","authors":"Heejeong Choi, Subin Kim, Pilsung Kang","doi":"10.1007/s10489-023-04764-5","DOIUrl":null,"url":null,"abstract":"<div><p>As large-scale time-series data can easily be found in real-world applications, multivariate time-series anomaly detection has played an essential role in diverse industries. It enables productivity improvement and maintenance cost reduction by preventing malfunctions and detecting anomalies based on time-series data. However, multivariate time-series anomaly detection is challenging because real-world time-series data exhibit complex temporal dependencies. For this task, it is crucial to learn a rich representation that effectively contains the nonlinear temporal dynamics of normal behavior. In this study, we propose an unsupervised multivariate time-series anomaly detection model named RAE-MEPC which learns informative normal representations based on multi-resolution ensemble reconstruction and predictive coding. We introduce multi-resolution ensemble encoding to capture the multi-scale dependency from the input time series. The encoder hierarchically aggregates the multi-scale temporal features extracted from the sub-encoders with different encoding lengths. From these encoded features, the reconstruction decoder reconstructs the input time series based on multi-resolution ensemble decoding where lower-resolution information helps to decode sub-decoders with higher-resolution outputs. Predictive coding is further introduced to encourage the model to learn more temporal dependencies of the time series. Experiments on real-world benchmark datasets show that the proposed model outperforms the benchmark models for multivariate time-series anomaly detection.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"53 21","pages":"25330 - 25342"},"PeriodicalIF":3.4000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recurrent auto-encoder with multi-resolution ensemble and predictive coding for multivariate time-series anomaly detection\",\"authors\":\"Heejeong Choi, Subin Kim, Pilsung Kang\",\"doi\":\"10.1007/s10489-023-04764-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As large-scale time-series data can easily be found in real-world applications, multivariate time-series anomaly detection has played an essential role in diverse industries. It enables productivity improvement and maintenance cost reduction by preventing malfunctions and detecting anomalies based on time-series data. However, multivariate time-series anomaly detection is challenging because real-world time-series data exhibit complex temporal dependencies. For this task, it is crucial to learn a rich representation that effectively contains the nonlinear temporal dynamics of normal behavior. In this study, we propose an unsupervised multivariate time-series anomaly detection model named RAE-MEPC which learns informative normal representations based on multi-resolution ensemble reconstruction and predictive coding. We introduce multi-resolution ensemble encoding to capture the multi-scale dependency from the input time series. The encoder hierarchically aggregates the multi-scale temporal features extracted from the sub-encoders with different encoding lengths. From these encoded features, the reconstruction decoder reconstructs the input time series based on multi-resolution ensemble decoding where lower-resolution information helps to decode sub-decoders with higher-resolution outputs. Predictive coding is further introduced to encourage the model to learn more temporal dependencies of the time series. Experiments on real-world benchmark datasets show that the proposed model outperforms the benchmark models for multivariate time-series anomaly detection.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"53 21\",\"pages\":\"25330 - 25342\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-023-04764-5\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-023-04764-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Recurrent auto-encoder with multi-resolution ensemble and predictive coding for multivariate time-series anomaly detection
As large-scale time-series data can easily be found in real-world applications, multivariate time-series anomaly detection has played an essential role in diverse industries. It enables productivity improvement and maintenance cost reduction by preventing malfunctions and detecting anomalies based on time-series data. However, multivariate time-series anomaly detection is challenging because real-world time-series data exhibit complex temporal dependencies. For this task, it is crucial to learn a rich representation that effectively contains the nonlinear temporal dynamics of normal behavior. In this study, we propose an unsupervised multivariate time-series anomaly detection model named RAE-MEPC which learns informative normal representations based on multi-resolution ensemble reconstruction and predictive coding. We introduce multi-resolution ensemble encoding to capture the multi-scale dependency from the input time series. The encoder hierarchically aggregates the multi-scale temporal features extracted from the sub-encoders with different encoding lengths. From these encoded features, the reconstruction decoder reconstructs the input time series based on multi-resolution ensemble decoding where lower-resolution information helps to decode sub-decoders with higher-resolution outputs. Predictive coding is further introduced to encourage the model to learn more temporal dependencies of the time series. Experiments on real-world benchmark datasets show that the proposed model outperforms the benchmark models for multivariate time-series anomaly detection.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.