{"title":"负阶Fock–Sobolev空间上的交换Toeplitz算子","authors":"Hong Rae Cho, Han-Wool Lee","doi":"10.1007/s10114-023-1541-z","DOIUrl":null,"url":null,"abstract":"<div><p>In the setting of Fock–Sobolev spaces of positive orders over the complex plane, Choe and Yang showed that if the one of the symbols of two commuting Toeplitz operators with bounded symbols is non-trivially radial, then the other must also be radial. In this paper, we extend this result to the Fock–Sobolev space of negative order using the Fock-type space with a confluent hypergeometric function.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Commuting Toeplitz Operators on Fock–Sobolev Spaces of Negative Orders\",\"authors\":\"Hong Rae Cho, Han-Wool Lee\",\"doi\":\"10.1007/s10114-023-1541-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the setting of Fock–Sobolev spaces of positive orders over the complex plane, Choe and Yang showed that if the one of the symbols of two commuting Toeplitz operators with bounded symbols is non-trivially radial, then the other must also be radial. In this paper, we extend this result to the Fock–Sobolev space of negative order using the Fock-type space with a confluent hypergeometric function.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-023-1541-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-023-1541-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Commuting Toeplitz Operators on Fock–Sobolev Spaces of Negative Orders
In the setting of Fock–Sobolev spaces of positive orders over the complex plane, Choe and Yang showed that if the one of the symbols of two commuting Toeplitz operators with bounded symbols is non-trivially radial, then the other must also be radial. In this paper, we extend this result to the Fock–Sobolev space of negative order using the Fock-type space with a confluent hypergeometric function.