负阶Fock–Sobolev空间上的交换Toeplitz算子

Pub Date : 2023-10-15 DOI:10.1007/s10114-023-1541-z
Hong Rae Cho, Han-Wool Lee
{"title":"负阶Fock–Sobolev空间上的交换Toeplitz算子","authors":"Hong Rae Cho,&nbsp;Han-Wool Lee","doi":"10.1007/s10114-023-1541-z","DOIUrl":null,"url":null,"abstract":"<div><p>In the setting of Fock–Sobolev spaces of positive orders over the complex plane, Choe and Yang showed that if the one of the symbols of two commuting Toeplitz operators with bounded symbols is non-trivially radial, then the other must also be radial. In this paper, we extend this result to the Fock–Sobolev space of negative order using the Fock-type space with a confluent hypergeometric function.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Commuting Toeplitz Operators on Fock–Sobolev Spaces of Negative Orders\",\"authors\":\"Hong Rae Cho,&nbsp;Han-Wool Lee\",\"doi\":\"10.1007/s10114-023-1541-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the setting of Fock–Sobolev spaces of positive orders over the complex plane, Choe and Yang showed that if the one of the symbols of two commuting Toeplitz operators with bounded symbols is non-trivially radial, then the other must also be radial. In this paper, we extend this result to the Fock–Sobolev space of negative order using the Fock-type space with a confluent hypergeometric function.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-023-1541-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-023-1541-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在复平面上正阶Fock–Sobolev空间的设置中,Choe和Yang证明了如果具有有界符号的两个可交换Toeplitz算子的符号之一是非平凡径向的,那么另一个也必须是径向的。在本文中,我们使用具有合流超几何函数的Fock型空间将这一结果推广到负阶的Fock–Sobolev空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Commuting Toeplitz Operators on Fock–Sobolev Spaces of Negative Orders

In the setting of Fock–Sobolev spaces of positive orders over the complex plane, Choe and Yang showed that if the one of the symbols of two commuting Toeplitz operators with bounded symbols is non-trivially radial, then the other must also be radial. In this paper, we extend this result to the Fock–Sobolev space of negative order using the Fock-type space with a confluent hypergeometric function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信