{"title":"训练数据集对光学拉盖尔-高斯模式识别精度影响的研究","authors":"A. V. Bekhterev","doi":"10.3103/S1060992X2305003X","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the accuracy of convolutional neural network recognition of Laguerre and Hermite-Gauss optical modes with geometric distortions in the form of affine transformations. The influence of training data sampling on the accuracy is analyzed. The ability of a convolutional neural network to recognize Laguerre and Hermite-Gaussian optical modes with geometric distortions caused by environmental distortions and described by affine transformations was also examined.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the Training Data Set Influence on the Accuracy of the Optical Laguerre-Gaussian Modes Recognition\",\"authors\":\"A. V. Bekhterev\",\"doi\":\"10.3103/S1060992X2305003X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper investigates the accuracy of convolutional neural network recognition of Laguerre and Hermite-Gauss optical modes with geometric distortions in the form of affine transformations. The influence of training data sampling on the accuracy is analyzed. The ability of a convolutional neural network to recognize Laguerre and Hermite-Gaussian optical modes with geometric distortions caused by environmental distortions and described by affine transformations was also examined.</p>\",\"PeriodicalId\":721,\"journal\":{\"name\":\"Optical Memory and Neural Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Memory and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1060992X2305003X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X2305003X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Investigation of the Training Data Set Influence on the Accuracy of the Optical Laguerre-Gaussian Modes Recognition
This paper investigates the accuracy of convolutional neural network recognition of Laguerre and Hermite-Gauss optical modes with geometric distortions in the form of affine transformations. The influence of training data sampling on the accuracy is analyzed. The ability of a convolutional neural network to recognize Laguerre and Hermite-Gaussian optical modes with geometric distortions caused by environmental distortions and described by affine transformations was also examined.
期刊介绍:
The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.