Efimov效应在一个简单模型中的严格推导

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Davide Fermi, Daniele Ferretti, Alessandro Teta
{"title":"Efimov效应在一个简单模型中的严格推导","authors":"Davide Fermi,&nbsp;Daniele Ferretti,&nbsp;Alessandro Teta","doi":"10.1007/s11005-023-01734-3","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a system of three identical bosons in <span>\\(\\mathbb {R}^3\\)</span> with two-body zero-range interactions and a three-body hard-core repulsion of a given radius <span>\\( a &gt; 0\\)</span>. Using a quadratic form approach, we prove that the corresponding Hamiltonian is self-adjoint and bounded from below for any value of <i>a</i>. In particular, this means that the hard-core repulsion is sufficient to prevent the fall to the center phenomenon found by Minlos and Faddeev in their seminal work on the three-body problem in 1961. Furthermore, in the case of infinite two-body scattering length, also known as unitary limit, we prove the Efimov effect, i.e., we show that the Hamiltonian has an infinite sequence of negative eigenvalues <span>\\(E_n\\)</span> accumulating at zero and fulfilling the asymptotic geometrical law <span>\\(\\;E_{n+1} / E_n \\; \\rightarrow \\; e^{-\\frac{2\\pi }{s_0}}\\,\\; \\,\\text {for} \\,\\; n\\rightarrow +\\infty \\)</span> holds, where <span>\\(s_0\\approx 1.00624\\)</span>.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"113 6","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rigorous derivation of the Efimov effect in a simple model\",\"authors\":\"Davide Fermi,&nbsp;Daniele Ferretti,&nbsp;Alessandro Teta\",\"doi\":\"10.1007/s11005-023-01734-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider a system of three identical bosons in <span>\\\\(\\\\mathbb {R}^3\\\\)</span> with two-body zero-range interactions and a three-body hard-core repulsion of a given radius <span>\\\\( a &gt; 0\\\\)</span>. Using a quadratic form approach, we prove that the corresponding Hamiltonian is self-adjoint and bounded from below for any value of <i>a</i>. In particular, this means that the hard-core repulsion is sufficient to prevent the fall to the center phenomenon found by Minlos and Faddeev in their seminal work on the three-body problem in 1961. Furthermore, in the case of infinite two-body scattering length, also known as unitary limit, we prove the Efimov effect, i.e., we show that the Hamiltonian has an infinite sequence of negative eigenvalues <span>\\\\(E_n\\\\)</span> accumulating at zero and fulfilling the asymptotic geometrical law <span>\\\\(\\\\;E_{n+1} / E_n \\\\; \\\\rightarrow \\\\; e^{-\\\\frac{2\\\\pi }{s_0}}\\\\,\\\\; \\\\,\\\\text {for} \\\\,\\\\; n\\\\rightarrow +\\\\infty \\\\)</span> holds, where <span>\\\\(s_0\\\\approx 1.00624\\\\)</span>.</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"113 6\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-023-01734-3\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-023-01734-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了一个在\(\mathbb{R}^3\)中由三个相同玻色子组成的系统,该系统具有两个零程相互作用和给定半径的三体硬核排斥(a>;0\)。使用二次型方法,我们证明了对应的哈密顿量是自伴随的,并且对于a的任何值都是从下有界的。特别地,这意味着硬核排斥足以防止Minlos和Faddeev在1961年关于三体问题的开创性工作中发现的中心落下现象。此外,在无穷长的两体散射长度(也称为酉极限)的情况下,我们证明了Efimov效应,即我们证明了哈密顿量有一个无穷多的负本征值序列\(e_n\)在零处积累并满足渐近几何定律\(\;e_{n+1}/e_n\;\rightarrow\;e^{-\frac{2\pi}{s_0}}\,\;\,\text{for}\;\;n\rightarrow+\infty\)成立,其中\(s_0\约1.00624\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rigorous derivation of the Efimov effect in a simple model

We consider a system of three identical bosons in \(\mathbb {R}^3\) with two-body zero-range interactions and a three-body hard-core repulsion of a given radius \( a > 0\). Using a quadratic form approach, we prove that the corresponding Hamiltonian is self-adjoint and bounded from below for any value of a. In particular, this means that the hard-core repulsion is sufficient to prevent the fall to the center phenomenon found by Minlos and Faddeev in their seminal work on the three-body problem in 1961. Furthermore, in the case of infinite two-body scattering length, also known as unitary limit, we prove the Efimov effect, i.e., we show that the Hamiltonian has an infinite sequence of negative eigenvalues \(E_n\) accumulating at zero and fulfilling the asymptotic geometrical law \(\;E_{n+1} / E_n \; \rightarrow \; e^{-\frac{2\pi }{s_0}}\,\; \,\text {for} \,\; n\rightarrow +\infty \) holds, where \(s_0\approx 1.00624\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信