可数服从群作用的相对熵维数

IF 1.2 4区 数学 Q1 MATHEMATICS
Zubiao Xiao, Zhengyu Yin
{"title":"可数服从群作用的相对熵维数","authors":"Zubiao Xiao,&nbsp;Zhengyu Yin","doi":"10.1007/s10473-023-0607-4","DOIUrl":null,"url":null,"abstract":"<div><p>We study the topological complexities of relative entropy zero extensions acted upon by countable-infinite amenable groups. First, for a given Følner sequence <span>\\(\\{{F_n}\\}_{n = 0}^{+ \\infty}\\)</span>, we define the relative entropy dimensions and the dimensions of the relative entropy generating sets to characterize the sub-exponential growth of the relative topological complexity. we also investigate the relations among these. Second, we introduce the notion of a relative dimension set. Moreover, using the method, we discuss the disjointness between the relative entropy zero extensions via the relative dimension sets of two extensions, which says that if the relative dimension sets of two extensions are different, then the extensions are disjoint.</p></div>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"43 6","pages":"2430 - 2448"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relative entropy dimension for countable amenable group actions\",\"authors\":\"Zubiao Xiao,&nbsp;Zhengyu Yin\",\"doi\":\"10.1007/s10473-023-0607-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the topological complexities of relative entropy zero extensions acted upon by countable-infinite amenable groups. First, for a given Følner sequence <span>\\\\(\\\\{{F_n}\\\\}_{n = 0}^{+ \\\\infty}\\\\)</span>, we define the relative entropy dimensions and the dimensions of the relative entropy generating sets to characterize the sub-exponential growth of the relative topological complexity. we also investigate the relations among these. Second, we introduce the notion of a relative dimension set. Moreover, using the method, we discuss the disjointness between the relative entropy zero extensions via the relative dimension sets of two extensions, which says that if the relative dimension sets of two extensions are different, then the extensions are disjoint.</p></div>\",\"PeriodicalId\":50998,\"journal\":{\"name\":\"Acta Mathematica Scientia\",\"volume\":\"43 6\",\"pages\":\"2430 - 2448\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Scientia\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10473-023-0607-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"1089","ListUrlMain":"https://link.springer.com/article/10.1007/s10473-023-0607-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了可数无限服从群作用下相对熵零扩张的拓扑复杂性。首先,对于给定的Følner序列(\{{F_n}\}_{n=0}^{+\infty}\),我们定义了相对熵维数和相对熵生成集的维数,以表征相对拓扑复杂性的亚指数增长。我们还考察了它们之间的关系。其次,我们引入了相对维集的概念。此外,利用该方法,我们通过两个扩展的相对维集讨论了相对熵零扩展之间的不相交性,即如果两个扩展中的相对维集合不同,则扩展是不相交的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relative entropy dimension for countable amenable group actions

We study the topological complexities of relative entropy zero extensions acted upon by countable-infinite amenable groups. First, for a given Følner sequence \(\{{F_n}\}_{n = 0}^{+ \infty}\), we define the relative entropy dimensions and the dimensions of the relative entropy generating sets to characterize the sub-exponential growth of the relative topological complexity. we also investigate the relations among these. Second, we introduce the notion of a relative dimension set. Moreover, using the method, we discuss the disjointness between the relative entropy zero extensions via the relative dimension sets of two extensions, which says that if the relative dimension sets of two extensions are different, then the extensions are disjoint.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信