非阿基米德赋范空间的等距和相位等距

IF 1.2 4区 数学 Q1 MATHEMATICS
Ruidong Wang, Wenting Yao
{"title":"非阿基米德赋范空间的等距和相位等距","authors":"Ruidong Wang,&nbsp;Wenting Yao","doi":"10.1007/s10473-023-0603-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study isometries and phase-isometries of non-Archimedean normed spaces. We show that every isometry <i>f</i> : <i>S</i><sub><i>r</i></sub> (<i>X</i>) → <i>S</i><sub><i>r</i></sub> (<i>X</i>), where <i>X</i> is a finite-dimensional non-Archimedean normed space and <i>S</i><sub><i>r</i></sub>(<i>X</i>) is a sphere with radius <i>r</i> ∈ ∥X∥, is surjective if and only if <span>\\(\\mathbb{K}\\)</span> is spherically complete and <i>k</i> is finite. Moreover, we prove that if <i>X</i> and <i>Y</i> are non-Archimedean normed spaces over non-trivially non-Archimedean valued fields with |2| = 1, any phase-isometry <i>f</i>: <i>X</i> → <i>Y</i> is phase equivalent to an isometric operator.</p></div>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"43 6","pages":"2377 - 2386"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isometry and phase-isometry of non-Archimedean normed spaces\",\"authors\":\"Ruidong Wang,&nbsp;Wenting Yao\",\"doi\":\"10.1007/s10473-023-0603-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study isometries and phase-isometries of non-Archimedean normed spaces. We show that every isometry <i>f</i> : <i>S</i><sub><i>r</i></sub> (<i>X</i>) → <i>S</i><sub><i>r</i></sub> (<i>X</i>), where <i>X</i> is a finite-dimensional non-Archimedean normed space and <i>S</i><sub><i>r</i></sub>(<i>X</i>) is a sphere with radius <i>r</i> ∈ ∥X∥, is surjective if and only if <span>\\\\(\\\\mathbb{K}\\\\)</span> is spherically complete and <i>k</i> is finite. Moreover, we prove that if <i>X</i> and <i>Y</i> are non-Archimedean normed spaces over non-trivially non-Archimedean valued fields with |2| = 1, any phase-isometry <i>f</i>: <i>X</i> → <i>Y</i> is phase equivalent to an isometric operator.</p></div>\",\"PeriodicalId\":50998,\"journal\":{\"name\":\"Acta Mathematica Scientia\",\"volume\":\"43 6\",\"pages\":\"2377 - 2386\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Scientia\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10473-023-0603-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"1089","ListUrlMain":"https://link.springer.com/article/10.1007/s10473-023-0603-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了非阿基米德赋范空间的等距和相位等距。我们证明了每个等距f:Sr(X)→ Sr(X)是满射的,当且仅当\(\mathbb{K}\)是球完备的,K是有限的,其中X是有限维非阿基米德赋范空间,Sr(X)是半径为r∈‖X‖的球面。此外,我们证明了如果X和Y是|2|=1的非平凡非阿基米德值域上的非阿基米德赋范空间,则任何相位等距f:X→ Y的相位等效于等轴测操作符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isometry and phase-isometry of non-Archimedean normed spaces

In this paper, we study isometries and phase-isometries of non-Archimedean normed spaces. We show that every isometry f : Sr (X) → Sr (X), where X is a finite-dimensional non-Archimedean normed space and Sr(X) is a sphere with radius r ∈ ∥X∥, is surjective if and only if \(\mathbb{K}\) is spherically complete and k is finite. Moreover, we prove that if X and Y are non-Archimedean normed spaces over non-trivially non-Archimedean valued fields with |2| = 1, any phase-isometry f: XY is phase equivalent to an isometric operator.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信