分数有色噪声驱动的随机热方程的运输成本信息不等式

IF 1.2 4区 数学 Q1 MATHEMATICS
Ruinan Li, Xinyu Wang
{"title":"分数有色噪声驱动的随机热方程的运输成本信息不等式","authors":"Ruinan Li,&nbsp;Xinyu Wang","doi":"10.1007/s10473-023-0612-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we prove Talagrand’s <b>T</b><sub><b>2</b></sub> transportation cost-information inequality for the law of stochastic heat equation driven by Gaussian noise, which is fractional for a time variable with the Hurst index <span>\\(H \\in ({1 \\over 2},1)\\)</span>, and is correlated for the spatial variable. The Girsanov theorem for fractional-colored Gaussian noise plays an important role in the proof.</p></div>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"43 6","pages":"2519 - 2532"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transportation cost-information inequality for a stochastic heat equation driven by fractional-colored noise\",\"authors\":\"Ruinan Li,&nbsp;Xinyu Wang\",\"doi\":\"10.1007/s10473-023-0612-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we prove Talagrand’s <b>T</b><sub><b>2</b></sub> transportation cost-information inequality for the law of stochastic heat equation driven by Gaussian noise, which is fractional for a time variable with the Hurst index <span>\\\\(H \\\\in ({1 \\\\over 2},1)\\\\)</span>, and is correlated for the spatial variable. The Girsanov theorem for fractional-colored Gaussian noise plays an important role in the proof.</p></div>\",\"PeriodicalId\":50998,\"journal\":{\"name\":\"Acta Mathematica Scientia\",\"volume\":\"43 6\",\"pages\":\"2519 - 2532\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Scientia\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10473-023-0612-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"1089","ListUrlMain":"https://link.springer.com/article/10.1007/s10473-023-0612-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了高斯噪声驱动的随机热方程定律的Talagrand的T2运输成本信息不等式,该不等式对于具有Hurst指数的时间变量是分数的,并且对于空间变量是相关的。分数阶有色高斯噪声的Girsanov定理在证明中起着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transportation cost-information inequality for a stochastic heat equation driven by fractional-colored noise

In this paper, we prove Talagrand’s T2 transportation cost-information inequality for the law of stochastic heat equation driven by Gaussian noise, which is fractional for a time variable with the Hurst index \(H \in ({1 \over 2},1)\), and is correlated for the spatial variable. The Girsanov theorem for fractional-colored Gaussian noise plays an important role in the proof.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信