Cu–Fe双金属MOF提高了光催化CO2还原对CO生产的选择性†

IF 4.4 3区 化学 Q2 CHEMISTRY, PHYSICAL
Huayong Yang, Min Zhang, Zhongjie Guan and Jianjun Yang
{"title":"Cu–Fe双金属MOF提高了光催化CO2还原对CO生产的选择性†","authors":"Huayong Yang, Min Zhang, Zhongjie Guan and Jianjun Yang","doi":"10.1039/D3CY00842H","DOIUrl":null,"url":null,"abstract":"<p >The rational design of multi-ligand bimetallic MOFs with a monomolecular structure is a very effective way to study product selectivity of the photocatalytic CO<small><sub>2</sub></small> reduction reaction (CO<small><sub>2</sub></small>RR) using MOFs-based catalysts. Herein, a new Cu–Fe bimetallic MOF material, namely Cu-MOF–Fcdc-20% (Fcdc = 1,1′-ferrocenedicarboxylic acid), was constructed by a multi-ligand strategy to improve the selectivity of photocatalytic CO<small><sub>2</sub></small> reduction toward CO production. Specifically, the Cu-MOF based on H<small><sub>3</sub></small>NTB (4,4′,4′′-nitrilotribenzoic acid) and the phen ligand (1,10-phenanthroline) could catalyze CO<small><sub>2</sub></small> to CO, but with relatively low selectivity. After the introduction of the Fcdc ligand, the resulting Cu-MOF–Fcdc-20% displayed not only enhanced CO selectivity but also improved efficiency for CO<small><sub>2</sub></small>RR. Cu-MOF–Fcdc-20% exhibited a higher CO selectivity of 97.07% and a CO yield of 8.61 μmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>, which is about 5.48 times higher than that exhibited by Cu-MOF (1.57 μmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>, 81.35%). <em>In situ</em> FT-IR, EPR, and other experimental characterizations were further performed to investigate the intrinsic mechanism of the photocatalytic CO<small><sub>2</sub></small> reduction process. The <em>in situ</em> FT-IR experimental data show that Cu-MOF–Fcdc-20% can effectively accelerate the rate-limiting step <img>, which in turn improves the rate and selectivity of CO<small><sub>2</sub></small> conversion to CO. This work demonstrates that the rational design of the Cu–Fe bimetallic MOF structure can effectively improve the catalytic selectivity of the photocatalytic CO<small><sub>2</sub></small> reduction reaction, offering a new way of designing highly selective MOF photocatalysts.</p>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":" 21","pages":" 6238-6246"},"PeriodicalIF":4.4000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cu–Fe bimetallic MOF enhances the selectivity of photocatalytic CO2 reduction toward CO production†\",\"authors\":\"Huayong Yang, Min Zhang, Zhongjie Guan and Jianjun Yang\",\"doi\":\"10.1039/D3CY00842H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The rational design of multi-ligand bimetallic MOFs with a monomolecular structure is a very effective way to study product selectivity of the photocatalytic CO<small><sub>2</sub></small> reduction reaction (CO<small><sub>2</sub></small>RR) using MOFs-based catalysts. Herein, a new Cu–Fe bimetallic MOF material, namely Cu-MOF–Fcdc-20% (Fcdc = 1,1′-ferrocenedicarboxylic acid), was constructed by a multi-ligand strategy to improve the selectivity of photocatalytic CO<small><sub>2</sub></small> reduction toward CO production. Specifically, the Cu-MOF based on H<small><sub>3</sub></small>NTB (4,4′,4′′-nitrilotribenzoic acid) and the phen ligand (1,10-phenanthroline) could catalyze CO<small><sub>2</sub></small> to CO, but with relatively low selectivity. After the introduction of the Fcdc ligand, the resulting Cu-MOF–Fcdc-20% displayed not only enhanced CO selectivity but also improved efficiency for CO<small><sub>2</sub></small>RR. Cu-MOF–Fcdc-20% exhibited a higher CO selectivity of 97.07% and a CO yield of 8.61 μmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>, which is about 5.48 times higher than that exhibited by Cu-MOF (1.57 μmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>, 81.35%). <em>In situ</em> FT-IR, EPR, and other experimental characterizations were further performed to investigate the intrinsic mechanism of the photocatalytic CO<small><sub>2</sub></small> reduction process. The <em>in situ</em> FT-IR experimental data show that Cu-MOF–Fcdc-20% can effectively accelerate the rate-limiting step <img>, which in turn improves the rate and selectivity of CO<small><sub>2</sub></small> conversion to CO. This work demonstrates that the rational design of the Cu–Fe bimetallic MOF structure can effectively improve the catalytic selectivity of the photocatalytic CO<small><sub>2</sub></small> reduction reaction, offering a new way of designing highly selective MOF photocatalysts.</p>\",\"PeriodicalId\":66,\"journal\":{\"name\":\"Catalysis Science & Technology\",\"volume\":\" 21\",\"pages\":\" 6238-6246\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Science & Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/cy/d3cy00842h\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/cy/d3cy00842h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

合理设计具有单分子结构的多配体双金属MOFs是研究MOFs基催化剂光催化CO2还原反应(CO2RR)产物选择性的一种非常有效的方法。本文通过多配体策略构建了一种新的Cu–Fe双金属MOF材料,即Cu–Fcdc-20%(Fcdc=1,1′-二茂铁二羧酸),以提高光催化CO2还原对CO产生的选择性。具体而言,基于H3NTB(4,4′,4′-次氮基苯甲酸)和phen配体(1,10-菲罗啉)的Cu-MOF可以催化CO2转化为CO,但选择性相对较低。在引入Fcdc配体后,得到的Cu-MOF–Fcdc-20%不仅表现出增强的CO选择性,而且还提高了CO2RR的效率。Cu-MOF–Fcdc-20%表现出97.07%的较高CO选择性和8.61μmol g−1 h−1的CO产率,约为Cu-MOF表现出的5.48倍(1.57μmol g-1 h−1,81.35%)。进一步进行了原位FT-IR、EPR等实验表征,以研究光催化CO2还原过程的内在机理。原位FT-IR实验数据表明,Cu-MOF–Fcdc-20%可以有效地加速限速步骤,从而提高CO2转化为CO的速率和选择性。这项工作表明,合理设计Cu–Fe双金属MOF结构可以有效地提高光催化CO2还原反应的催化选择性,提供了一种设计高选择性MOF光催化剂的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cu–Fe bimetallic MOF enhances the selectivity of photocatalytic CO2 reduction toward CO production†

Cu–Fe bimetallic MOF enhances the selectivity of photocatalytic CO2 reduction toward CO production†

The rational design of multi-ligand bimetallic MOFs with a monomolecular structure is a very effective way to study product selectivity of the photocatalytic CO2 reduction reaction (CO2RR) using MOFs-based catalysts. Herein, a new Cu–Fe bimetallic MOF material, namely Cu-MOF–Fcdc-20% (Fcdc = 1,1′-ferrocenedicarboxylic acid), was constructed by a multi-ligand strategy to improve the selectivity of photocatalytic CO2 reduction toward CO production. Specifically, the Cu-MOF based on H3NTB (4,4′,4′′-nitrilotribenzoic acid) and the phen ligand (1,10-phenanthroline) could catalyze CO2 to CO, but with relatively low selectivity. After the introduction of the Fcdc ligand, the resulting Cu-MOF–Fcdc-20% displayed not only enhanced CO selectivity but also improved efficiency for CO2RR. Cu-MOF–Fcdc-20% exhibited a higher CO selectivity of 97.07% and a CO yield of 8.61 μmol g−1 h−1, which is about 5.48 times higher than that exhibited by Cu-MOF (1.57 μmol g−1 h−1, 81.35%). In situ FT-IR, EPR, and other experimental characterizations were further performed to investigate the intrinsic mechanism of the photocatalytic CO2 reduction process. The in situ FT-IR experimental data show that Cu-MOF–Fcdc-20% can effectively accelerate the rate-limiting step , which in turn improves the rate and selectivity of CO2 conversion to CO. This work demonstrates that the rational design of the Cu–Fe bimetallic MOF structure can effectively improve the catalytic selectivity of the photocatalytic CO2 reduction reaction, offering a new way of designing highly selective MOF photocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信