{"title":"有丝核基因组中群体多态性的积累及其对极端环境(如法医目的的海拔)的可能适应效应","authors":"G.C. Iannacone , P. Ramírez","doi":"10.1016/j.fsigss.2022.09.027","DOIUrl":null,"url":null,"abstract":"<div><p>We analyzed the accumulation of population polymorphism in 2504 individuals - nuclear genomes (nDNA) of 26 populations (81 genes associated to extreme environments) and 3295 mitochondrial genomes (mtDNA) of 47 populations with the aim to found mitonuclear relationship associated an extremes environment as altitude. For that, we use an algorithm developed by us to determine the accumulation of polymorphisms by segments in the genome and thus be able to perform the multivariate analysis to found SNPs differences and similarities among populations. The results showed in Peruvian population a statistically significant mitonuclear relationship for 113/293970 nDNA SNPs in 16/81 genes. In the case of the mtDNA, we found a statistically significant mitonuclear relationship for 6/22 mtDNA positions – Gene. Additionally for the Peruvian population, the MRPP3 had the greatest polymorphism contribution with respect to other populations. Then, these nDNA and mtDNA SNPs in genetically close populations to Peru can be applied to forensic genomic phenotyping to identify groups likely adapted to extreme conditions (such as altitude) or make individualization between low and high altitude populations.</p></div>","PeriodicalId":56262,"journal":{"name":"Forensic Science International: Genetics Supplement Series","volume":"8 ","pages":"Pages 74-76"},"PeriodicalIF":0.5000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1875176822000269/pdfft?md5=3c5ae8c9622a8592152dc43b36ca512c&pid=1-s2.0-S1875176822000269-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Accumulation of population polymorphisms in the mitonuclear genome with probable adaptive effect to extreme environments as altitude for forensic purposes\",\"authors\":\"G.C. Iannacone , P. Ramírez\",\"doi\":\"10.1016/j.fsigss.2022.09.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We analyzed the accumulation of population polymorphism in 2504 individuals - nuclear genomes (nDNA) of 26 populations (81 genes associated to extreme environments) and 3295 mitochondrial genomes (mtDNA) of 47 populations with the aim to found mitonuclear relationship associated an extremes environment as altitude. For that, we use an algorithm developed by us to determine the accumulation of polymorphisms by segments in the genome and thus be able to perform the multivariate analysis to found SNPs differences and similarities among populations. The results showed in Peruvian population a statistically significant mitonuclear relationship for 113/293970 nDNA SNPs in 16/81 genes. In the case of the mtDNA, we found a statistically significant mitonuclear relationship for 6/22 mtDNA positions – Gene. Additionally for the Peruvian population, the MRPP3 had the greatest polymorphism contribution with respect to other populations. Then, these nDNA and mtDNA SNPs in genetically close populations to Peru can be applied to forensic genomic phenotyping to identify groups likely adapted to extreme conditions (such as altitude) or make individualization between low and high altitude populations.</p></div>\",\"PeriodicalId\":56262,\"journal\":{\"name\":\"Forensic Science International: Genetics Supplement Series\",\"volume\":\"8 \",\"pages\":\"Pages 74-76\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1875176822000269/pdfft?md5=3c5ae8c9622a8592152dc43b36ca512c&pid=1-s2.0-S1875176822000269-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic Science International: Genetics Supplement Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1875176822000269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International: Genetics Supplement Series","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875176822000269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Accumulation of population polymorphisms in the mitonuclear genome with probable adaptive effect to extreme environments as altitude for forensic purposes
We analyzed the accumulation of population polymorphism in 2504 individuals - nuclear genomes (nDNA) of 26 populations (81 genes associated to extreme environments) and 3295 mitochondrial genomes (mtDNA) of 47 populations with the aim to found mitonuclear relationship associated an extremes environment as altitude. For that, we use an algorithm developed by us to determine the accumulation of polymorphisms by segments in the genome and thus be able to perform the multivariate analysis to found SNPs differences and similarities among populations. The results showed in Peruvian population a statistically significant mitonuclear relationship for 113/293970 nDNA SNPs in 16/81 genes. In the case of the mtDNA, we found a statistically significant mitonuclear relationship for 6/22 mtDNA positions – Gene. Additionally for the Peruvian population, the MRPP3 had the greatest polymorphism contribution with respect to other populations. Then, these nDNA and mtDNA SNPs in genetically close populations to Peru can be applied to forensic genomic phenotyping to identify groups likely adapted to extreme conditions (such as altitude) or make individualization between low and high altitude populations.
期刊介绍:
The Journal of Forensic Science International Genetics Supplement Series is the perfect publication vehicle for the proceedings of a scientific symposium, commissioned thematic issues, or for disseminating a selection of invited articles. The Forensic Science International Genetics Supplement Series is part of a duo of publications on forensic genetics, published by Elsevier on behalf of the International Society for Forensic Genetics.