具有非极大图极限的极大单调算子

Gerd Wachsmuth
{"title":"具有非极大图极限的极大单调算子","authors":"Gerd Wachsmuth","doi":"10.1016/j.exco.2022.100073","DOIUrl":null,"url":null,"abstract":"<div><p>We present a counterexample showing that the graphical limit of maximally monotone operators might not be maximally monotone. We also characterize the directional differentiability of the resolvent of an operator <span><math><mi>B</mi></math></span> in terms of existence and maximal monotonicity of the proto-derivative of <span><math><mi>B</mi></math></span>.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"2 ","pages":"Article 100073"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X22000131/pdfft?md5=663e4b30d499d928ad6f94f949cd2209&pid=1-s2.0-S2666657X22000131-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Maximal monotone operators with non-maximal graphical limit\",\"authors\":\"Gerd Wachsmuth\",\"doi\":\"10.1016/j.exco.2022.100073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a counterexample showing that the graphical limit of maximally monotone operators might not be maximally monotone. We also characterize the directional differentiability of the resolvent of an operator <span><math><mi>B</mi></math></span> in terms of existence and maximal monotonicity of the proto-derivative of <span><math><mi>B</mi></math></span>.</p></div>\",\"PeriodicalId\":100517,\"journal\":{\"name\":\"Examples and Counterexamples\",\"volume\":\"2 \",\"pages\":\"Article 100073\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666657X22000131/pdfft?md5=663e4b30d499d928ad6f94f949cd2209&pid=1-s2.0-S2666657X22000131-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Examples and Counterexamples\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666657X22000131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X22000131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了一个反例,证明了最大单调算子的图形极限可能不是最大单调的。我们还根据B的原导数的存在性和最大单调性刻画了算子B的预解式的方向可微性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximal monotone operators with non-maximal graphical limit

We present a counterexample showing that the graphical limit of maximally monotone operators might not be maximally monotone. We also characterize the directional differentiability of the resolvent of an operator B in terms of existence and maximal monotonicity of the proto-derivative of B.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信