以Burgers方程为代表的(3+1)维非线性偏微分方程的painlev分析、Bäcklund变换和精确解

M.H.M. Moussa, Zidan M. Abd Al-Halim
{"title":"以Burgers方程为代表的(3+1)维非线性偏微分方程的painlev<s:1>分析、Bäcklund变换和精确解","authors":"M.H.M. Moussa,&nbsp;Zidan M. Abd Al-Halim","doi":"10.1016/j.exco.2022.100081","DOIUrl":null,"url":null,"abstract":"<div><p>Herein, the Painlevé analysis and Bäcklund transformation for the  (3+1) dimensional Burger equation are presented. Using this analysis, it is shown that the equation under consideration non-integrable. But, it is under a constraint equation may be integrable. We construct the Bäcklund transformation for that equation. Similarity solutions for the mentioned equation have been obtained. Some of these solutions are completely new.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"2 ","pages":"Article 100081"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X22000179/pdfft?md5=007e91f8e4bfa868782a7c5be15704e5&pid=1-s2.0-S2666657X22000179-main.pdf","citationCount":"2","resultStr":"{\"title\":\"Painlevé analysis, Bäcklund transformation and Exact solutions for the (3+1)-dimensional nonlinear partial differential equation represented by Burgers’ equation\",\"authors\":\"M.H.M. Moussa,&nbsp;Zidan M. Abd Al-Halim\",\"doi\":\"10.1016/j.exco.2022.100081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Herein, the Painlevé analysis and Bäcklund transformation for the  (3+1) dimensional Burger equation are presented. Using this analysis, it is shown that the equation under consideration non-integrable. But, it is under a constraint equation may be integrable. We construct the Bäcklund transformation for that equation. Similarity solutions for the mentioned equation have been obtained. Some of these solutions are completely new.</p></div>\",\"PeriodicalId\":100517,\"journal\":{\"name\":\"Examples and Counterexamples\",\"volume\":\"2 \",\"pages\":\"Article 100081\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666657X22000179/pdfft?md5=007e91f8e4bfa868782a7c5be15704e5&pid=1-s2.0-S2666657X22000179-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Examples and Counterexamples\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666657X22000179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X22000179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文给出了(3+1)维Burger方程的Painlevé分析和Bäcklund变换。利用这种分析,证明了所考虑的方程是不可积的。但是,它是在一个约束方程下可以积的。我们构造了该方程的Bäcklund变换。得到了上述方程的相似解。其中一些解决方案是全新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Painlevé analysis, Bäcklund transformation and Exact solutions for the (3+1)-dimensional nonlinear partial differential equation represented by Burgers’ equation

Herein, the Painlevé analysis and Bäcklund transformation for the  (3+1) dimensional Burger equation are presented. Using this analysis, it is shown that the equation under consideration non-integrable. But, it is under a constraint equation may be integrable. We construct the Bäcklund transformation for that equation. Similarity solutions for the mentioned equation have been obtained. Some of these solutions are completely new.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信