考虑热导率空间变化的北极熊热传导分形边值问题的数值处理

Navnit Jha
{"title":"考虑热导率空间变化的北极熊热传导分形边值问题的数值处理","authors":"Navnit Jha","doi":"10.1016/j.exco.2022.100088","DOIUrl":null,"url":null,"abstract":"<div><p>A high-resolution compact discretization scheme for the numerical approximation of two-point nonlinear fractal boundary value problems is presented to study the stationary anomalous diffusion process. Hausdorff derivative is applied to derive the models in fractal media. The proposed scheme solves the nonlinear fractal model and achieves an accuracy of order four by employing only three mesh points in a stencil and consumes short computing time. Numerical simulations with heat conduction in polar bear, convection–diffusion, boundary layer, Bessel’s and Burgers equation in a fractal medium are carried out to illustrate the utility of the scheme and their numerical rate of convergence.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"2 ","pages":"Article 100088"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X22000210/pdfft?md5=072080d010ecc5a7c70a88203588807f&pid=1-s2.0-S2666657X22000210-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Numerical treatment of fractal boundary value problems for heat conduction in polar bear with spatial variation of thermal conductivity\",\"authors\":\"Navnit Jha\",\"doi\":\"10.1016/j.exco.2022.100088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A high-resolution compact discretization scheme for the numerical approximation of two-point nonlinear fractal boundary value problems is presented to study the stationary anomalous diffusion process. Hausdorff derivative is applied to derive the models in fractal media. The proposed scheme solves the nonlinear fractal model and achieves an accuracy of order four by employing only three mesh points in a stencil and consumes short computing time. Numerical simulations with heat conduction in polar bear, convection–diffusion, boundary layer, Bessel’s and Burgers equation in a fractal medium are carried out to illustrate the utility of the scheme and their numerical rate of convergence.</p></div>\",\"PeriodicalId\":100517,\"journal\":{\"name\":\"Examples and Counterexamples\",\"volume\":\"2 \",\"pages\":\"Article 100088\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666657X22000210/pdfft?md5=072080d010ecc5a7c70a88203588807f&pid=1-s2.0-S2666657X22000210-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Examples and Counterexamples\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666657X22000210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X22000210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了研究平稳异常扩散过程,提出了一种用于两点非线性分形边值问题数值逼近的高分辨率紧致离散化方案。应用Hausdorff导数导出分形介质中的模型。该方案解决了非线性分形模型,在一个模板中只使用三个网格点,精度达到四阶,计算时间短。对分形介质中的北极熊热传导、对流-扩散、边界层、贝塞尔方程和Burgers方程进行了数值模拟,以说明该格式的实用性及其数值收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical treatment of fractal boundary value problems for heat conduction in polar bear with spatial variation of thermal conductivity

A high-resolution compact discretization scheme for the numerical approximation of two-point nonlinear fractal boundary value problems is presented to study the stationary anomalous diffusion process. Hausdorff derivative is applied to derive the models in fractal media. The proposed scheme solves the nonlinear fractal model and achieves an accuracy of order four by employing only three mesh points in a stencil and consumes short computing time. Numerical simulations with heat conduction in polar bear, convection–diffusion, boundary layer, Bessel’s and Burgers equation in a fractal medium are carried out to illustrate the utility of the scheme and their numerical rate of convergence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信