Swift-Hohenberg方程的一些例子

Haresh P. Jani, Twinkle R. Singh
{"title":"Swift-Hohenberg方程的一些例子","authors":"Haresh P. Jani,&nbsp;Twinkle R. Singh","doi":"10.1016/j.exco.2022.100090","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we solve partial differential equations using the Aboodh transform and the homotopy perturbation method (HPM). The Swift–Hohenberg equation accurately describes pattern development and evolution. The Swift–Hohenberg (S–H) model is linked to fluid dynamics, temperature, and thermal convection, and it can be used to describe how liquid surfaces with a horizontally well-conducting boundary form.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"2 ","pages":"Article 100090"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X22000234/pdfft?md5=858850a7e53372b937f273f5a13392f6&pid=1-s2.0-S2666657X22000234-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Some examples of Swift–Hohenberg equation\",\"authors\":\"Haresh P. Jani,&nbsp;Twinkle R. Singh\",\"doi\":\"10.1016/j.exco.2022.100090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we solve partial differential equations using the Aboodh transform and the homotopy perturbation method (HPM). The Swift–Hohenberg equation accurately describes pattern development and evolution. The Swift–Hohenberg (S–H) model is linked to fluid dynamics, temperature, and thermal convection, and it can be used to describe how liquid surfaces with a horizontally well-conducting boundary form.</p></div>\",\"PeriodicalId\":100517,\"journal\":{\"name\":\"Examples and Counterexamples\",\"volume\":\"2 \",\"pages\":\"Article 100090\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666657X22000234/pdfft?md5=858850a7e53372b937f273f5a13392f6&pid=1-s2.0-S2666657X22000234-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Examples and Counterexamples\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666657X22000234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X22000234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们使用Aboodh变换和同位微扰方法(HPM)求解偏微分方程。Swift–Hohenberg方程准确地描述了模式的发展和演变。Swift–Hohenberg(S–H)模型与流体动力学、温度和热对流有关,可用于描述具有水平良好导电边界的液体表面是如何形成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some examples of Swift–Hohenberg equation

In this work, we solve partial differential equations using the Aboodh transform and the homotopy perturbation method (HPM). The Swift–Hohenberg equation accurately describes pattern development and evolution. The Swift–Hohenberg (S–H) model is linked to fluid dynamics, temperature, and thermal convection, and it can be used to describe how liquid surfaces with a horizontally well-conducting boundary form.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信