{"title":"Swift-Hohenberg方程的一些例子","authors":"Haresh P. Jani, Twinkle R. Singh","doi":"10.1016/j.exco.2022.100090","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we solve partial differential equations using the Aboodh transform and the homotopy perturbation method (HPM). The Swift–Hohenberg equation accurately describes pattern development and evolution. The Swift–Hohenberg (S–H) model is linked to fluid dynamics, temperature, and thermal convection, and it can be used to describe how liquid surfaces with a horizontally well-conducting boundary form.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"2 ","pages":"Article 100090"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X22000234/pdfft?md5=858850a7e53372b937f273f5a13392f6&pid=1-s2.0-S2666657X22000234-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Some examples of Swift–Hohenberg equation\",\"authors\":\"Haresh P. Jani, Twinkle R. Singh\",\"doi\":\"10.1016/j.exco.2022.100090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we solve partial differential equations using the Aboodh transform and the homotopy perturbation method (HPM). The Swift–Hohenberg equation accurately describes pattern development and evolution. The Swift–Hohenberg (S–H) model is linked to fluid dynamics, temperature, and thermal convection, and it can be used to describe how liquid surfaces with a horizontally well-conducting boundary form.</p></div>\",\"PeriodicalId\":100517,\"journal\":{\"name\":\"Examples and Counterexamples\",\"volume\":\"2 \",\"pages\":\"Article 100090\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666657X22000234/pdfft?md5=858850a7e53372b937f273f5a13392f6&pid=1-s2.0-S2666657X22000234-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Examples and Counterexamples\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666657X22000234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X22000234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this work, we solve partial differential equations using the Aboodh transform and the homotopy perturbation method (HPM). The Swift–Hohenberg equation accurately describes pattern development and evolution. The Swift–Hohenberg (S–H) model is linked to fluid dynamics, temperature, and thermal convection, and it can be used to describe how liquid surfaces with a horizontally well-conducting boundary form.