{"title":"方程x2−(p2q2±3p)y2=±kt的解","authors":"Roji Bala, Vinod Mishra","doi":"10.1016/j.exco.2021.100043","DOIUrl":null,"url":null,"abstract":"<div><p>In the present paper, we have solved the equation <span><math><mrow><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mrow><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>±</mo><mn>3</mn><mi>p</mi><mo>)</mo></mrow><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>t</mi></mrow></msup><mo>,</mo><mspace></mspace><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mrow><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>±</mo><mn>5</mn><mi>p</mi><mo>)</mo></mrow><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>t</mi></mrow></msup></mrow></math></span> and expressed its positive integer solutions in terms of generalized Fibonacci, generalized Lucas and generalized Pell, generalized Pell–Lucas sequences. With the help of this equation, we have found units of <span><math><mrow><mi>Z</mi><mrow><mo>[</mo><msqrt><mrow><mn>885</mn></mrow></msqrt><mo>]</mo></mrow></mrow></math></span> and <span><math><mrow><mi>Z</mi><mrow><mo>[</mo><msqrt><mrow><mn>915</mn></mrow></msqrt><mo>]</mo></mrow></mrow></math></span> in terms of generalized Fibonacci, generalized Lucas, generalized Pell and generalized Pell–Lucas numbers.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"2 ","pages":"Article 100043"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X21000239/pdfft?md5=ca9fffbadacbdefbd419ff95b70172cd&pid=1-s2.0-S2666657X21000239-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Solutions of equations x2−(p2q2±3p)y2=±kt\",\"authors\":\"Roji Bala, Vinod Mishra\",\"doi\":\"10.1016/j.exco.2021.100043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present paper, we have solved the equation <span><math><mrow><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mrow><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>±</mo><mn>3</mn><mi>p</mi><mo>)</mo></mrow><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>t</mi></mrow></msup><mo>,</mo><mspace></mspace><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mrow><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>±</mo><mn>5</mn><mi>p</mi><mo>)</mo></mrow><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>t</mi></mrow></msup></mrow></math></span> and expressed its positive integer solutions in terms of generalized Fibonacci, generalized Lucas and generalized Pell, generalized Pell–Lucas sequences. With the help of this equation, we have found units of <span><math><mrow><mi>Z</mi><mrow><mo>[</mo><msqrt><mrow><mn>885</mn></mrow></msqrt><mo>]</mo></mrow></mrow></math></span> and <span><math><mrow><mi>Z</mi><mrow><mo>[</mo><msqrt><mrow><mn>915</mn></mrow></msqrt><mo>]</mo></mrow></mrow></math></span> in terms of generalized Fibonacci, generalized Lucas, generalized Pell and generalized Pell–Lucas numbers.</p></div>\",\"PeriodicalId\":100517,\"journal\":{\"name\":\"Examples and Counterexamples\",\"volume\":\"2 \",\"pages\":\"Article 100043\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666657X21000239/pdfft?md5=ca9fffbadacbdefbd419ff95b70172cd&pid=1-s2.0-S2666657X21000239-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Examples and Counterexamples\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666657X21000239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X21000239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In the present paper, we have solved the equation and expressed its positive integer solutions in terms of generalized Fibonacci, generalized Lucas and generalized Pell, generalized Pell–Lucas sequences. With the help of this equation, we have found units of and in terms of generalized Fibonacci, generalized Lucas, generalized Pell and generalized Pell–Lucas numbers.