量子谐振子的偶指数本征函数

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
John M. Campbell
{"title":"量子谐振子的偶指数本征函数","authors":"John M. Campbell","doi":"10.1016/S0034-4877(23)00069-1","DOIUrl":null,"url":null,"abstract":"<div><p>In 2021, Fassari et al. introduced a remarkable summation involving the even-indexed eigenfunctions of the quantum harmonic oscillator, and introduced a proof, based on manipulations of multiple elliptic integrals, for an evaluation involving Catalan's constant for the aforementioned summation. This motivates the development of generalizations and extensions of this evaluation. In this article, we show, using the Wilf–Zeilberger method, how this series evaluation may be extended to infinite families of hypergeometric expressions that have free parameters and that are explicitly evaluable in terms of the digamma function. We also consider how an identity related to a nonterminating <em>q</em>-Pfaff–Saalschütz sum due to Krattenthaler and Srivastava may be applied to further generalize the main result due to Fassari et al.</p></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the even-indexed eigenfunctions of the quantum harmonic oscillator\",\"authors\":\"John M. Campbell\",\"doi\":\"10.1016/S0034-4877(23)00069-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In 2021, Fassari et al. introduced a remarkable summation involving the even-indexed eigenfunctions of the quantum harmonic oscillator, and introduced a proof, based on manipulations of multiple elliptic integrals, for an evaluation involving Catalan's constant for the aforementioned summation. This motivates the development of generalizations and extensions of this evaluation. In this article, we show, using the Wilf–Zeilberger method, how this series evaluation may be extended to infinite families of hypergeometric expressions that have free parameters and that are explicitly evaluable in terms of the digamma function. We also consider how an identity related to a nonterminating <em>q</em>-Pfaff–Saalschütz sum due to Krattenthaler and Srivastava may be applied to further generalize the main result due to Fassari et al.</p></div>\",\"PeriodicalId\":49630,\"journal\":{\"name\":\"Reports on Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034487723000691\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034487723000691","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

2021年,Fassari等人引入了一个涉及量子谐振子偶数索引本征函数的显著求和,并引入了一种基于多重椭圆积分操作的证明,用于涉及上述求和的Catalan常数的评估。这推动了该评估的推广和扩展。在这篇文章中,我们使用Wilf–Zeilberger方法展示了如何将该级数求值扩展到具有自由参数且可根据digamma函数显式求值的超几何表达式的无限族。我们还考虑了如何应用由Krattenthaler和Srivastava引起的与非终结q-Pfaff–Saalschütz和相关的恒等式来进一步推广由Fassari等人引起的主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the even-indexed eigenfunctions of the quantum harmonic oscillator

In 2021, Fassari et al. introduced a remarkable summation involving the even-indexed eigenfunctions of the quantum harmonic oscillator, and introduced a proof, based on manipulations of multiple elliptic integrals, for an evaluation involving Catalan's constant for the aforementioned summation. This motivates the development of generalizations and extensions of this evaluation. In this article, we show, using the Wilf–Zeilberger method, how this series evaluation may be extended to infinite families of hypergeometric expressions that have free parameters and that are explicitly evaluable in terms of the digamma function. We also consider how an identity related to a nonterminating q-Pfaff–Saalschütz sum due to Krattenthaler and Srivastava may be applied to further generalize the main result due to Fassari et al.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reports on Mathematical Physics
Reports on Mathematical Physics 物理-物理:数学物理
CiteScore
1.80
自引率
0.00%
发文量
40
审稿时长
6 months
期刊介绍: Reports on Mathematical Physics publish papers in theoretical physics which present a rigorous mathematical approach to problems of quantum and classical mechanics and field theories, relativity and gravitation, statistical physics, thermodynamics, mathematical foundations of physical theories, etc. Preferred are papers using modern methods of functional analysis, probability theory, differential geometry, algebra and mathematical logic. Papers without direct connection with physics will not be accepted. Manuscripts should be concise, but possibly complete in presentation and discussion, to be comprehensible not only for mathematicians, but also for mathematically oriented theoretical physicists. All papers should describe original work and be written in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信