Yuanxin Ye , Jie Shan , Siyuan Hao , Lorenzo Bruzzone , Yao Qin
{"title":"基于局部相位的遥感图像匹配不变性特征","authors":"Yuanxin Ye , Jie Shan , Siyuan Hao , Lorenzo Bruzzone , Yao Qin","doi":"10.1016/j.isprsjprs.2018.06.010","DOIUrl":null,"url":null,"abstract":"<div><p>Local invariant features from computer vision community have recently been widely applied to the matching of remote sensing images<span>. However, these features are mainly designed to handle geometric distortions<span><span>, and are sensitive to complex radiometric differences between multisensor images. To address this issue, this paper proposes an effective local invariant feature that is sufficiently robust to both geometric and radiometric changes. The proposed feature is built based on the phase congruency model that is invariant to illumination and contrast variation. It consists of a feature detector named MMPC-Lap and a feature descriptor named </span>local histogram of orientated phase congruency (LHOPC). MMPC-Lap is constructed by using the minimum moment of phase congruency for feature detection with an automatic scale location technique, which is used to detect stable keypoints in image scale space. Subsequently, LHOPC derives the feature descriptor for a keypoint by utilizing an extended phase congruency feature with an advanced descriptor configuration. Finally, correspondences are achieved by evaluating the similarity of the feature descriptors. The proposed MMPC-Lap and LHOPC have been evaluated under different imaging conditions (spectral, temporal, and scale changes). The results obtained on a variety of remote sensing images demonstrate its excellent performance with respect to the state-of-the-art local invariant features, especially for cases where there are complex radiometric differences.</span></span></p></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"142 ","pages":"Pages 205-221"},"PeriodicalIF":12.2000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.isprsjprs.2018.06.010","citationCount":"67","resultStr":"{\"title\":\"A local phase based invariant feature for remote sensing image matching\",\"authors\":\"Yuanxin Ye , Jie Shan , Siyuan Hao , Lorenzo Bruzzone , Yao Qin\",\"doi\":\"10.1016/j.isprsjprs.2018.06.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Local invariant features from computer vision community have recently been widely applied to the matching of remote sensing images<span>. However, these features are mainly designed to handle geometric distortions<span><span>, and are sensitive to complex radiometric differences between multisensor images. To address this issue, this paper proposes an effective local invariant feature that is sufficiently robust to both geometric and radiometric changes. The proposed feature is built based on the phase congruency model that is invariant to illumination and contrast variation. It consists of a feature detector named MMPC-Lap and a feature descriptor named </span>local histogram of orientated phase congruency (LHOPC). MMPC-Lap is constructed by using the minimum moment of phase congruency for feature detection with an automatic scale location technique, which is used to detect stable keypoints in image scale space. Subsequently, LHOPC derives the feature descriptor for a keypoint by utilizing an extended phase congruency feature with an advanced descriptor configuration. Finally, correspondences are achieved by evaluating the similarity of the feature descriptors. The proposed MMPC-Lap and LHOPC have been evaluated under different imaging conditions (spectral, temporal, and scale changes). The results obtained on a variety of remote sensing images demonstrate its excellent performance with respect to the state-of-the-art local invariant features, especially for cases where there are complex radiometric differences.</span></span></p></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":\"142 \",\"pages\":\"Pages 205-221\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.isprsjprs.2018.06.010\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924271618301734\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271618301734","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
A local phase based invariant feature for remote sensing image matching
Local invariant features from computer vision community have recently been widely applied to the matching of remote sensing images. However, these features are mainly designed to handle geometric distortions, and are sensitive to complex radiometric differences between multisensor images. To address this issue, this paper proposes an effective local invariant feature that is sufficiently robust to both geometric and radiometric changes. The proposed feature is built based on the phase congruency model that is invariant to illumination and contrast variation. It consists of a feature detector named MMPC-Lap and a feature descriptor named local histogram of orientated phase congruency (LHOPC). MMPC-Lap is constructed by using the minimum moment of phase congruency for feature detection with an automatic scale location technique, which is used to detect stable keypoints in image scale space. Subsequently, LHOPC derives the feature descriptor for a keypoint by utilizing an extended phase congruency feature with an advanced descriptor configuration. Finally, correspondences are achieved by evaluating the similarity of the feature descriptors. The proposed MMPC-Lap and LHOPC have been evaluated under different imaging conditions (spectral, temporal, and scale changes). The results obtained on a variety of remote sensing images demonstrate its excellent performance with respect to the state-of-the-art local invariant features, especially for cases where there are complex radiometric differences.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.