Gross–Pitaevskii旋转方程高阶能量守恒时间积分器的一致L∞界

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Christian Döding, Patrick Henning
{"title":"Gross–Pitaevskii旋转方程高阶能量守恒时间积分器的一致L∞界","authors":"Christian Döding, Patrick Henning","doi":"10.1093/imanum/drad081","DOIUrl":null,"url":null,"abstract":"In this paper, we consider an energy-conserving continuous Galerkin discretization of the Gross–Pitaevskii equation with a magnetic trapping potential and a stirring potential for angular momentum rotation. The discretization is based on finite elements in space and time and allows for arbitrary polynomial orders. It was first analyzed by O. Karakashian and C. Makridakis (SIAM J. Numer. Anal., 36(6),1779–1807, 1999) in the absence of potential terms and corresponding a priori error estimates were derived in $2D$. In this work we revisit the approach in the generalized setting of the Gross–Pitaevskii equation with rotation and we prove uniform $L^{\\infty }$-bounds for the corresponding numerical approximations in $2D$ and $3D$ without coupling conditions between the spatial mesh size and the time step size. With this result at hand, we are particularly able to extend the previous error estimates to the $3D$ setting while avoiding artificial CFL conditions.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniform L∞-bounds for energy-conserving higher-order time integrators for the Gross–Pitaevskii equation with rotation\",\"authors\":\"Christian Döding, Patrick Henning\",\"doi\":\"10.1093/imanum/drad081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider an energy-conserving continuous Galerkin discretization of the Gross–Pitaevskii equation with a magnetic trapping potential and a stirring potential for angular momentum rotation. The discretization is based on finite elements in space and time and allows for arbitrary polynomial orders. It was first analyzed by O. Karakashian and C. Makridakis (SIAM J. Numer. Anal., 36(6),1779–1807, 1999) in the absence of potential terms and corresponding a priori error estimates were derived in $2D$. In this work we revisit the approach in the generalized setting of the Gross–Pitaevskii equation with rotation and we prove uniform $L^{\\\\infty }$-bounds for the corresponding numerical approximations in $2D$ and $3D$ without coupling conditions between the spatial mesh size and the time step size. With this result at hand, we are particularly able to extend the previous error estimates to the $3D$ setting while avoiding artificial CFL conditions.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/drad081\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drad081","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了角动量旋转的Gross–Pitaevskii方程的能量守恒连续Galerkin离散化,该方程具有磁捕获势和搅拌势。离散化基于空间和时间上的有限元,并允许任意多项式阶。O.Karakashian和C.Makridakis首先对其进行了分析(SIAM J.Numer.Anal.,36(6),1779-18071999),在没有潜在项的情况下,相应的先验误差估计以$2D$得出。在这项工作中,我们重新审视了具有旋转的Gross–Pitaevskii方程的广义设置中的方法,并且在空间网格大小和时间步长之间没有耦合条件的情况下,我们证明了$2D$和$3D$中相应数值近似的一致$L^{\infty}$边界。有了这个结果,我们特别能够将之前的误差估计扩展到$3D$设置,同时避免人为的CFL条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniform L∞-bounds for energy-conserving higher-order time integrators for the Gross–Pitaevskii equation with rotation
In this paper, we consider an energy-conserving continuous Galerkin discretization of the Gross–Pitaevskii equation with a magnetic trapping potential and a stirring potential for angular momentum rotation. The discretization is based on finite elements in space and time and allows for arbitrary polynomial orders. It was first analyzed by O. Karakashian and C. Makridakis (SIAM J. Numer. Anal., 36(6),1779–1807, 1999) in the absence of potential terms and corresponding a priori error estimates were derived in $2D$. In this work we revisit the approach in the generalized setting of the Gross–Pitaevskii equation with rotation and we prove uniform $L^{\infty }$-bounds for the corresponding numerical approximations in $2D$ and $3D$ without coupling conditions between the spatial mesh size and the time step size. With this result at hand, we are particularly able to extend the previous error estimates to the $3D$ setting while avoiding artificial CFL conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信