用于超快电子显微镜的基于光电二极管的时间零点测定。

IF 2.3 2区 物理与天体物理 Q3 CHEMISTRY, PHYSICAL
Structural Dynamics-Us Pub Date : 2023-11-06 eCollection Date: 2023-11-01 DOI:10.1063/4.0000218
S T Kempers, S Borrelli, E R Kieft, H A van Doorn, P H A Mutsaers, O J Luiten
{"title":"用于超快电子显微镜的基于光电二极管的时间零点测定。","authors":"S T Kempers, S Borrelli, E R Kieft, H A van Doorn, P H A Mutsaers, O J Luiten","doi":"10.1063/4.0000218","DOIUrl":null,"url":null,"abstract":"<p><p>Pump-probe experiments in ultrafast electron microscopy require temporal overlap between the pump and probe pulses. Accurate measurements of the time delay between them allows for the determination of the time zero, the moment in time where both pulses perfectly overlap. In this work, we present the use of a photodiode-based alignment method for these time zero measurements. The cheap and easy-to-use device consists of a photodiode in a sample holder and enables us to temporally align individual, single-electron pulses with femtosecond laser pulses. In a first device, a temporal resolution of 24 ps is obtained, limited by the photodiode design. Future work will utilize a smaller photodiode with a lower capacitance, which will increase the temporal resolution and add spatial resolution as well. This upgrade will bring the method toward the micrometer and picosecond spatiotemporal resolution.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"10 6","pages":"064301"},"PeriodicalIF":2.3000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629968/pdf/","citationCount":"0","resultStr":"{\"title\":\"Photodiode-based time zero determination for ultrafast electron microscopy.\",\"authors\":\"S T Kempers, S Borrelli, E R Kieft, H A van Doorn, P H A Mutsaers, O J Luiten\",\"doi\":\"10.1063/4.0000218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pump-probe experiments in ultrafast electron microscopy require temporal overlap between the pump and probe pulses. Accurate measurements of the time delay between them allows for the determination of the time zero, the moment in time where both pulses perfectly overlap. In this work, we present the use of a photodiode-based alignment method for these time zero measurements. The cheap and easy-to-use device consists of a photodiode in a sample holder and enables us to temporally align individual, single-electron pulses with femtosecond laser pulses. In a first device, a temporal resolution of 24 ps is obtained, limited by the photodiode design. Future work will utilize a smaller photodiode with a lower capacitance, which will increase the temporal resolution and add spatial resolution as well. This upgrade will bring the method toward the micrometer and picosecond spatiotemporal resolution.</p>\",\"PeriodicalId\":48683,\"journal\":{\"name\":\"Structural Dynamics-Us\",\"volume\":\"10 6\",\"pages\":\"064301\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629968/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Dynamics-Us\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/4.0000218\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/4.0000218","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

超快电子显微镜中的泵浦-探针实验需要泵浦脉冲和探针脉冲之间的时间重叠。精确测量它们之间的时间延迟可以确定时间零点,即两个脉冲完全重叠的时刻。在这项工作中,我们提出了使用基于光电二极管的对准方法进行这些时间零点测量。这种廉价易用的设备由样品支架中的光电二极管组成,使我们能够在时间上将单个单电子脉冲与飞秒激光脉冲对准。在第一器件中,由于光电二极管设计的限制,获得了24ps的时间分辨率。未来的工作将使用电容较低的较小光电二极管,这将提高时间分辨率并增加空间分辨率。这一升级将使该方法达到微米和皮秒的时空分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Photodiode-based time zero determination for ultrafast electron microscopy.

Photodiode-based time zero determination for ultrafast electron microscopy.

Photodiode-based time zero determination for ultrafast electron microscopy.

Photodiode-based time zero determination for ultrafast electron microscopy.

Pump-probe experiments in ultrafast electron microscopy require temporal overlap between the pump and probe pulses. Accurate measurements of the time delay between them allows for the determination of the time zero, the moment in time where both pulses perfectly overlap. In this work, we present the use of a photodiode-based alignment method for these time zero measurements. The cheap and easy-to-use device consists of a photodiode in a sample holder and enables us to temporally align individual, single-electron pulses with femtosecond laser pulses. In a first device, a temporal resolution of 24 ps is obtained, limited by the photodiode design. Future work will utilize a smaller photodiode with a lower capacitance, which will increase the temporal resolution and add spatial resolution as well. This upgrade will bring the method toward the micrometer and picosecond spatiotemporal resolution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Dynamics-Us
Structural Dynamics-Us CHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍: Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods. The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as: Time-resolved X-ray and electron diffraction and scattering, Coherent diffractive imaging, Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.), Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy, Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.), Multidimensional spectroscopies in the infrared, the visible and the ultraviolet, Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains, Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals. These new methods are enabled by new instrumentation, such as: X-ray free electron lasers, which provide flux, coherence, and time resolution, New sources of ultrashort electron pulses, New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources, New sources of ultrashort infrared and terahertz (THz) radiation, New detectors for X-rays and electrons, New sample handling and delivery schemes, New computational capabilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信