平稳高斯过程零个数方差的一个渐近公式。

IF 1.5 1区 数学 Q2 STATISTICS & PROBABILITY
Probability Theory and Related Fields Pub Date : 2023-01-01 Epub Date: 2023-09-23 DOI:10.1007/s00440-023-01218-4
Eran Assaf, Jeremiah Buckley, Naomi Feldheim
{"title":"平稳高斯过程零个数方差的一个渐近公式。","authors":"Eran Assaf, Jeremiah Buckley, Naomi Feldheim","doi":"10.1007/s00440-023-01218-4","DOIUrl":null,"url":null,"abstract":"<p><p>We study the variance of the number of zeroes of a stationary Gaussian process on a long interval. We give a simple asymptotic description under mild mixing conditions. This allows us to characterise minimal and maximal growth. We show that a small (symmetrised) atom in the spectral measure at a special frequency does not affect the asymptotic growth of the variance, while an atom at any other frequency results in maximal growth.</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":"187 3-4","pages":"999-1036"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628032/pdf/","citationCount":"6","resultStr":"{\"title\":\"An asymptotic formula for the variance of the number of zeroes of a stationary Gaussian process.\",\"authors\":\"Eran Assaf, Jeremiah Buckley, Naomi Feldheim\",\"doi\":\"10.1007/s00440-023-01218-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We study the variance of the number of zeroes of a stationary Gaussian process on a long interval. We give a simple asymptotic description under mild mixing conditions. This allows us to characterise minimal and maximal growth. We show that a small (symmetrised) atom in the spectral measure at a special frequency does not affect the asymptotic growth of the variance, while an atom at any other frequency results in maximal growth.</p>\",\"PeriodicalId\":20527,\"journal\":{\"name\":\"Probability Theory and Related Fields\",\"volume\":\"187 3-4\",\"pages\":\"999-1036\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628032/pdf/\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Theory and Related Fields\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00440-023-01218-4\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00440-023-01218-4","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 6

摘要

我们研究了平稳高斯过程在长区间上零点数的方差。在温和混合条件下,我们给出了一个简单的渐近描述。这使我们能够表征最小和最大的增长。我们证明,在特定频率的光谱测量中,一个小的(对称的)原子不会影响方差的渐近增长,而在任何其他频率的原子都会导致最大增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An asymptotic formula for the variance of the number of zeroes of a stationary Gaussian process.

An asymptotic formula for the variance of the number of zeroes of a stationary Gaussian process.

We study the variance of the number of zeroes of a stationary Gaussian process on a long interval. We give a simple asymptotic description under mild mixing conditions. This allows us to characterise minimal and maximal growth. We show that a small (symmetrised) atom in the spectral measure at a special frequency does not affect the asymptotic growth of the variance, while an atom at any other frequency results in maximal growth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probability Theory and Related Fields
Probability Theory and Related Fields 数学-统计学与概率论
CiteScore
3.70
自引率
5.00%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信