{"title":"Weyl不变量$E_8$Jacobi形式和$E$字符串","authors":"Kaiwen Sun, Haowu Wang","doi":"10.4310/cntp.2023.v17.n3.a1","DOIUrl":null,"url":null,"abstract":"In 1992 Wirthmüller showed that for any irreducible root system not of type $E_8$ the ring of weak Jacobi forms invariant under Weyl group is a polynomial algebra. However, it has recently been proved that for $E_8$ the ring is not a polynomial algebra. Weyl invariant $E_8$ Jacobi forms have many applications in string theory and it is an open problem to describe such forms. The scaled refined free energies of $E$-strings with certain $\\eta$-function factors are conjectured to be Weyl invariant $E_8$ quasi-holomorphic Jacobi forms. It is further observed that the scaled refined free energies up to some powers of $E_4$ can be written as polynomials in nine Sakai’s $E_8$ Jacobi forms and Eisenstein series $E_2, E_4, E_6$. Motivated by the physical conjectures, we prove that for any Weyl invariant $E_8$ Jacobi form $\\phi_t$ of index $t$ the function $E^{[t/5]}_4 \\Delta^{[5t/6]} \\phi_t$ can be expressed uniquely as a polynomial in $E_4$, $E_6$ and Sakai’s forms, where $[x]$ is the integer part of $x$. This means that a Weyl invariant $E_8$ Jacobi form is completely determined by a solution of some linear equations. By solving the linear systems, we determine the generators of the free module of Weyl invariant $E_8$ weak (resp. holomorphic) Jacobi forms of given index $t$ when $t \\leq 13$ (resp. $t \\leq 11$).","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weyl invariant $E_8$ Jacobi forms and $E$-strings\",\"authors\":\"Kaiwen Sun, Haowu Wang\",\"doi\":\"10.4310/cntp.2023.v17.n3.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1992 Wirthmüller showed that for any irreducible root system not of type $E_8$ the ring of weak Jacobi forms invariant under Weyl group is a polynomial algebra. However, it has recently been proved that for $E_8$ the ring is not a polynomial algebra. Weyl invariant $E_8$ Jacobi forms have many applications in string theory and it is an open problem to describe such forms. The scaled refined free energies of $E$-strings with certain $\\\\eta$-function factors are conjectured to be Weyl invariant $E_8$ quasi-holomorphic Jacobi forms. It is further observed that the scaled refined free energies up to some powers of $E_4$ can be written as polynomials in nine Sakai’s $E_8$ Jacobi forms and Eisenstein series $E_2, E_4, E_6$. Motivated by the physical conjectures, we prove that for any Weyl invariant $E_8$ Jacobi form $\\\\phi_t$ of index $t$ the function $E^{[t/5]}_4 \\\\Delta^{[5t/6]} \\\\phi_t$ can be expressed uniquely as a polynomial in $E_4$, $E_6$ and Sakai’s forms, where $[x]$ is the integer part of $x$. This means that a Weyl invariant $E_8$ Jacobi form is completely determined by a solution of some linear equations. By solving the linear systems, we determine the generators of the free module of Weyl invariant $E_8$ weak (resp. holomorphic) Jacobi forms of given index $t$ when $t \\\\leq 13$ (resp. $t \\\\leq 11$).\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cntp.2023.v17.n3.a1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2023.v17.n3.a1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
In 1992 Wirthmüller showed that for any irreducible root system not of type $E_8$ the ring of weak Jacobi forms invariant under Weyl group is a polynomial algebra. However, it has recently been proved that for $E_8$ the ring is not a polynomial algebra. Weyl invariant $E_8$ Jacobi forms have many applications in string theory and it is an open problem to describe such forms. The scaled refined free energies of $E$-strings with certain $\eta$-function factors are conjectured to be Weyl invariant $E_8$ quasi-holomorphic Jacobi forms. It is further observed that the scaled refined free energies up to some powers of $E_4$ can be written as polynomials in nine Sakai’s $E_8$ Jacobi forms and Eisenstein series $E_2, E_4, E_6$. Motivated by the physical conjectures, we prove that for any Weyl invariant $E_8$ Jacobi form $\phi_t$ of index $t$ the function $E^{[t/5]}_4 \Delta^{[5t/6]} \phi_t$ can be expressed uniquely as a polynomial in $E_4$, $E_6$ and Sakai’s forms, where $[x]$ is the integer part of $x$. This means that a Weyl invariant $E_8$ Jacobi form is completely determined by a solution of some linear equations. By solving the linear systems, we determine the generators of the free module of Weyl invariant $E_8$ weak (resp. holomorphic) Jacobi forms of given index $t$ when $t \leq 13$ (resp. $t \leq 11$).
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.