Weyl不变量$E_8$Jacobi形式和$E$字符串

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kaiwen Sun, Haowu Wang
{"title":"Weyl不变量$E_8$Jacobi形式和$E$字符串","authors":"Kaiwen Sun, Haowu Wang","doi":"10.4310/cntp.2023.v17.n3.a1","DOIUrl":null,"url":null,"abstract":"In 1992 Wirthmüller showed that for any irreducible root system not of type $E_8$ the ring of weak Jacobi forms invariant under Weyl group is a polynomial algebra. However, it has recently been proved that for $E_8$ the ring is not a polynomial algebra. Weyl invariant $E_8$ Jacobi forms have many applications in string theory and it is an open problem to describe such forms. The scaled refined free energies of $E$-strings with certain $\\eta$-function factors are conjectured to be Weyl invariant $E_8$ quasi-holomorphic Jacobi forms. It is further observed that the scaled refined free energies up to some powers of $E_4$ can be written as polynomials in nine Sakai’s $E_8$ Jacobi forms and Eisenstein series $E_2, E_4, E_6$. Motivated by the physical conjectures, we prove that for any Weyl invariant $E_8$ Jacobi form $\\phi_t$ of index $t$ the function $E^{[t/5]}_4 \\Delta^{[5t/6]} \\phi_t$ can be expressed uniquely as a polynomial in $E_4$, $E_6$ and Sakai’s forms, where $[x]$ is the integer part of $x$. This means that a Weyl invariant $E_8$ Jacobi form is completely determined by a solution of some linear equations. By solving the linear systems, we determine the generators of the free module of Weyl invariant $E_8$ weak (resp. holomorphic) Jacobi forms of given index $t$ when $t \\leq 13$ (resp. $t \\leq 11$).","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weyl invariant $E_8$ Jacobi forms and $E$-strings\",\"authors\":\"Kaiwen Sun, Haowu Wang\",\"doi\":\"10.4310/cntp.2023.v17.n3.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1992 Wirthmüller showed that for any irreducible root system not of type $E_8$ the ring of weak Jacobi forms invariant under Weyl group is a polynomial algebra. However, it has recently been proved that for $E_8$ the ring is not a polynomial algebra. Weyl invariant $E_8$ Jacobi forms have many applications in string theory and it is an open problem to describe such forms. The scaled refined free energies of $E$-strings with certain $\\\\eta$-function factors are conjectured to be Weyl invariant $E_8$ quasi-holomorphic Jacobi forms. It is further observed that the scaled refined free energies up to some powers of $E_4$ can be written as polynomials in nine Sakai’s $E_8$ Jacobi forms and Eisenstein series $E_2, E_4, E_6$. Motivated by the physical conjectures, we prove that for any Weyl invariant $E_8$ Jacobi form $\\\\phi_t$ of index $t$ the function $E^{[t/5]}_4 \\\\Delta^{[5t/6]} \\\\phi_t$ can be expressed uniquely as a polynomial in $E_4$, $E_6$ and Sakai’s forms, where $[x]$ is the integer part of $x$. This means that a Weyl invariant $E_8$ Jacobi form is completely determined by a solution of some linear equations. By solving the linear systems, we determine the generators of the free module of Weyl invariant $E_8$ weak (resp. holomorphic) Jacobi forms of given index $t$ when $t \\\\leq 13$ (resp. $t \\\\leq 11$).\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cntp.2023.v17.n3.a1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2023.v17.n3.a1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

1992年Wirthmüller证明了对于任何不属于$E_8$型的不可约根系统,在Weyl群下弱Jacobi形式不变的环是多项式代数。然而,最近已经证明,对于$E_8$,环不是多项式代数。Weyl不变量$E_8$Jacobi形式在弦理论中有许多应用,描述这种形式是一个悬而未决的问题。假定具有特定$\eta$-函数因子的$E$-串的标度精化自由能为Weyl不变量$E_8$拟全纯Jacobi形式。进一步观察到,高达$E_4$的一些幂的缩放精细自由能可以写成九个Sakai的$E_8$Jacobi形式和Eisenstein级数$E_2,E_4,E_6$的多项式。在物理猜想的启发下,我们证明了对于索引$t$的任何Weyl不变量$E_8$Jacobi形式$\phi_t$,函数$E^{[t/5]}_4\Delta^{[5t/6]}\phi_t$可以唯一地表示为$E_4$、$E_6$和Sakai形式中的多项式,其中$[x]$是$x$的整数部分。这意味着Weyl不变量$E_8$Jacobi形式完全由一些线性方程的解确定。通过求解线性系统,我们确定了给定索引$t$的Weyl不变量$E_8$弱(分别为全纯)Jacobi形式的自由模在$t\leq 13$(分别为$t\liq 11$)时的生成元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weyl invariant $E_8$ Jacobi forms and $E$-strings
In 1992 Wirthmüller showed that for any irreducible root system not of type $E_8$ the ring of weak Jacobi forms invariant under Weyl group is a polynomial algebra. However, it has recently been proved that for $E_8$ the ring is not a polynomial algebra. Weyl invariant $E_8$ Jacobi forms have many applications in string theory and it is an open problem to describe such forms. The scaled refined free energies of $E$-strings with certain $\eta$-function factors are conjectured to be Weyl invariant $E_8$ quasi-holomorphic Jacobi forms. It is further observed that the scaled refined free energies up to some powers of $E_4$ can be written as polynomials in nine Sakai’s $E_8$ Jacobi forms and Eisenstein series $E_2, E_4, E_6$. Motivated by the physical conjectures, we prove that for any Weyl invariant $E_8$ Jacobi form $\phi_t$ of index $t$ the function $E^{[t/5]}_4 \Delta^{[5t/6]} \phi_t$ can be expressed uniquely as a polynomial in $E_4$, $E_6$ and Sakai’s forms, where $[x]$ is the integer part of $x$. This means that a Weyl invariant $E_8$ Jacobi form is completely determined by a solution of some linear equations. By solving the linear systems, we determine the generators of the free module of Weyl invariant $E_8$ weak (resp. holomorphic) Jacobi forms of given index $t$ when $t \leq 13$ (resp. $t \leq 11$).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信