n柱方形瓷砖表面对Masur–Veech体积的贡献$\mathcal{H}(2g-2)$

IF 2.4 1区 数学 Q1 MATHEMATICS
Ivan Yakovlev
{"title":"n柱方形瓷砖表面对Masur–Veech体积的贡献$\\mathcal{H}(2g-2)$","authors":"Ivan Yakovlev","doi":"10.1007/s00039-023-00652-9","DOIUrl":null,"url":null,"abstract":"<p>We find the generating function for the contributions of <i>n</i>-cylinder square-tiled surfaces to the Masur–Veech volume of <span>\\(\\mathcal{H}(2g-2)\\)</span>. It is a bivariate generalization of the generating function for the total volumes obtained by Sauvaget via intersection theory. Our approach is, however, purely combinatorial. It relies on the study of counting functions for certain families of metric ribbon graphs. Their top-degree terms are polynomials, whose (normalized) coefficients are cardinalities of certain families of metric plane trees. These polynomials are analogues of Kontsevich polynomials that appear as part of his proof of Witten’s conjecture.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"26 4","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contribution of n-cylinder square-tiled surfaces to Masur–Veech volume of $\\\\mathcal{H}(2g-2)$\",\"authors\":\"Ivan Yakovlev\",\"doi\":\"10.1007/s00039-023-00652-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We find the generating function for the contributions of <i>n</i>-cylinder square-tiled surfaces to the Masur–Veech volume of <span>\\\\(\\\\mathcal{H}(2g-2)\\\\)</span>. It is a bivariate generalization of the generating function for the total volumes obtained by Sauvaget via intersection theory. Our approach is, however, purely combinatorial. It relies on the study of counting functions for certain families of metric ribbon graphs. Their top-degree terms are polynomials, whose (normalized) coefficients are cardinalities of certain families of metric plane trees. These polynomials are analogues of Kontsevich polynomials that appear as part of his proof of Witten’s conjecture.</p>\",\"PeriodicalId\":12478,\"journal\":{\"name\":\"Geometric and Functional Analysis\",\"volume\":\"26 4\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometric and Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-023-00652-9\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-023-00652-9","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们找到了n-圆柱体正方形瓷砖表面对\(\mathcal{H}(2g-2)\)的Masur–Veech体积的贡献的生成函数。它是Sauvaget通过交集理论获得的总体积的生成函数的二元推广。然而,我们的方法纯粹是组合的。它依赖于对某些度量带状图族的计数函数的研究。它们的最高阶项是多项式,其(归一化)系数是度量平面树的某些族的基数。这些多项式是Kontsevich多项式的类似物,出现在他对Witten猜想的证明中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Contribution of n-cylinder square-tiled surfaces to Masur–Veech volume of $\mathcal{H}(2g-2)$

Contribution of n-cylinder square-tiled surfaces to Masur–Veech volume of $\mathcal{H}(2g-2)$

We find the generating function for the contributions of n-cylinder square-tiled surfaces to the Masur–Veech volume of \(\mathcal{H}(2g-2)\). It is a bivariate generalization of the generating function for the total volumes obtained by Sauvaget via intersection theory. Our approach is, however, purely combinatorial. It relies on the study of counting functions for certain families of metric ribbon graphs. Their top-degree terms are polynomials, whose (normalized) coefficients are cardinalities of certain families of metric plane trees. These polynomials are analogues of Kontsevich polynomials that appear as part of his proof of Witten’s conjecture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
4.50%
发文量
34
审稿时长
6-12 weeks
期刊介绍: Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis. GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016. Publishes major results on topics in geometry and analysis. Features papers which make connections between relevant fields and their applications to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信