Bers的同时一致化与Poincaréholonomy变种的交集

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Shinpei Baba
{"title":"Bers的同时一致化与Poincaréholonomy变种的交集","authors":"Shinpei Baba","doi":"10.1007/s00039-023-00653-8","DOIUrl":null,"url":null,"abstract":"<p>We consider the space of ordered pairs of distinct <span>\\({\\mathbb{C}{\\mathrm{P}}}^{1}\\)</span>-structures on Riemann surfaces (of any orientations) which have identical holonomy, so that the quasi-Fuchsian space is identified with a connected component of this space. This space holomorphically maps to the product of the Teichmüller spaces minus its diagonal.</p><p>In this paper, we prove that this mapping is a complete local branched covering map. As a corollary, we reprove Bers’ simultaneous uniformization theorem without any quasi-conformal deformation theory. Our main theorem is that the intersection of arbitrary two Poincaré holonomy varieties (<span>\\(\\operatorname{SL}_{2}\\mathbb{C}\\)</span>-opers) is a non-empty discrete set, which is closely related to the mapping.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bers’ simultaneous uniformization and the intersection of Poincaré holonomy varieties\",\"authors\":\"Shinpei Baba\",\"doi\":\"10.1007/s00039-023-00653-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the space of ordered pairs of distinct <span>\\\\({\\\\mathbb{C}{\\\\mathrm{P}}}^{1}\\\\)</span>-structures on Riemann surfaces (of any orientations) which have identical holonomy, so that the quasi-Fuchsian space is identified with a connected component of this space. This space holomorphically maps to the product of the Teichmüller spaces minus its diagonal.</p><p>In this paper, we prove that this mapping is a complete local branched covering map. As a corollary, we reprove Bers’ simultaneous uniformization theorem without any quasi-conformal deformation theory. Our main theorem is that the intersection of arbitrary two Poincaré holonomy varieties (<span>\\\\(\\\\operatorname{SL}_{2}\\\\mathbb{C}\\\\)</span>-opers) is a non-empty discrete set, which is closely related to the mapping.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-023-00653-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-023-00653-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑具有相同全息性的(任何方向的)黎曼曲面上的不同结构的有序对的空间,使得准Fuchsian空间被识别为该空间的连通分量。这个空间全纯映射到Teichmüller空间减去其对角线的乘积。本文证明了该映射是一个完全的局部分支覆盖映射。作为推论,我们在没有任何拟共形变形理论的情况下,重新提出了Bers的同时一致化定理。我们的主要定理是任意两个Poincaréholonomy变种(\(\ operatorname{SL}_{2} \mathbb{C}\)-运算器)是一个非空离散集,它与映射密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bers’ simultaneous uniformization and the intersection of Poincaré holonomy varieties

We consider the space of ordered pairs of distinct \({\mathbb{C}{\mathrm{P}}}^{1}\)-structures on Riemann surfaces (of any orientations) which have identical holonomy, so that the quasi-Fuchsian space is identified with a connected component of this space. This space holomorphically maps to the product of the Teichmüller spaces minus its diagonal.

In this paper, we prove that this mapping is a complete local branched covering map. As a corollary, we reprove Bers’ simultaneous uniformization theorem without any quasi-conformal deformation theory. Our main theorem is that the intersection of arbitrary two Poincaré holonomy varieties (\(\operatorname{SL}_{2}\mathbb{C}\)-opers) is a non-empty discrete set, which is closely related to the mapping.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信