经典波动方法和现代规范变换:一维情况下的谱渐近性

IF 2.4 1区 数学 Q1 MATHEMATICS
Jeffrey Galkowski, Leonid Parnovski, Roman Shterenberg
{"title":"经典波动方法和现代规范变换:一维情况下的谱渐近性","authors":"Jeffrey Galkowski, Leonid Parnovski, Roman Shterenberg","doi":"10.1007/s00039-023-00650-x","DOIUrl":null,"url":null,"abstract":"<p>In this article, we consider the asymptotic behaviour of the spectral function of Schrödinger operators on the real line. Let <span>\\(H: L^{2}(\\mathbb{R})\\to L^{2}(\\mathbb{R})\\)</span> have the form </p><span>$$ H:=-\\frac{d^{2}}{dx^{2}}+Q, $$</span><p> where <i>Q</i> is a formally self-adjoint first order differential operator with smooth coefficients, bounded with all derivatives. We show that the kernel of the spectral projector, <span>\\({1}_{(-\\infty ,\\rho ^{2}]}(H)\\)</span>, has a complete asymptotic expansion in powers of <i>ρ</i>. This settles the 1-dimensional case of a conjecture made by the last two authors.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"26 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classical wave methods and modern gauge transforms: spectral asymptotics in the one dimensional case\",\"authors\":\"Jeffrey Galkowski, Leonid Parnovski, Roman Shterenberg\",\"doi\":\"10.1007/s00039-023-00650-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we consider the asymptotic behaviour of the spectral function of Schrödinger operators on the real line. Let <span>\\\\(H: L^{2}(\\\\mathbb{R})\\\\to L^{2}(\\\\mathbb{R})\\\\)</span> have the form </p><span>$$ H:=-\\\\frac{d^{2}}{dx^{2}}+Q, $$</span><p> where <i>Q</i> is a formally self-adjoint first order differential operator with smooth coefficients, bounded with all derivatives. We show that the kernel of the spectral projector, <span>\\\\({1}_{(-\\\\infty ,\\\\rho ^{2}]}(H)\\\\)</span>, has a complete asymptotic expansion in powers of <i>ρ</i>. This settles the 1-dimensional case of a conjecture made by the last two authors.</p>\",\"PeriodicalId\":12478,\"journal\":{\"name\":\"Geometric and Functional Analysis\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometric and Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-023-00650-x\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-023-00650-x","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了实线上Schrödinger算子的谱函数的渐近性态。设\(H:L^{2}(\mathbb{R})\ to L^{}(\amathbb{R})\)的形式为$$H:=-\frac{d^{2}}{dx^{2*Q,$$,其中Q是具有光滑系数的形式自伴一阶微分算子,与所有导数有界。我们展示了光谱投影仪的核心\({1}_{(-\infty,\rho^{2}]}(H)\),具有ρ幂的完全渐近展开。这解决了最后两位作者提出的一个一维猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classical wave methods and modern gauge transforms: spectral asymptotics in the one dimensional case

In this article, we consider the asymptotic behaviour of the spectral function of Schrödinger operators on the real line. Let \(H: L^{2}(\mathbb{R})\to L^{2}(\mathbb{R})\) have the form

$$ H:=-\frac{d^{2}}{dx^{2}}+Q, $$

where Q is a formally self-adjoint first order differential operator with smooth coefficients, bounded with all derivatives. We show that the kernel of the spectral projector, \({1}_{(-\infty ,\rho ^{2}]}(H)\), has a complete asymptotic expansion in powers of ρ. This settles the 1-dimensional case of a conjecture made by the last two authors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
4.50%
发文量
34
审稿时长
6-12 weeks
期刊介绍: Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis. GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016. Publishes major results on topics in geometry and analysis. Features papers which make connections between relevant fields and their applications to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信