少三角形集合的一个结构定理

IF 1 2区 数学 Q1 MATHEMATICS
Sam Mansfield, Jonathan Passant
{"title":"少三角形集合的一个结构定理","authors":"Sam Mansfield, Jonathan Passant","doi":"10.1007/s00493-023-00066-z","DOIUrl":null,"url":null,"abstract":"<p>We show that if a finite point set <span>\\(P\\subseteq {\\mathbb {R}}^2\\)</span> has the fewest congruence classes of triangles possible, up to a constant <i>M</i>, then at least one of the following holds.</p><ul>\n<li>\n<p>There is a <span>\\(\\sigma &gt;0\\)</span> and a line <i>l</i> which contains <span>\\(\\Omega (|P|^\\sigma )\\)</span> points of <i>P</i>. Further, a positive proportion of <i>P</i> is covered by lines parallel to <i>l</i> each containing <span>\\(\\Omega (|P|^\\sigma )\\)</span> points of <i>P</i>.</p>\n</li>\n<li>\n<p>There is a circle <span>\\(\\gamma \\)</span> which contains a positive proportion of <i>P</i>.</p>\n</li>\n</ul><p> This provides evidence for two conjectures of Erdős. We use the result of Petridis–Roche–Newton–Rudnev–Warren on the structure of the affine group combined with classical results from additive combinatorics.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"11 18","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Structural Theorem for Sets with Few Triangles\",\"authors\":\"Sam Mansfield, Jonathan Passant\",\"doi\":\"10.1007/s00493-023-00066-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that if a finite point set <span>\\\\(P\\\\subseteq {\\\\mathbb {R}}^2\\\\)</span> has the fewest congruence classes of triangles possible, up to a constant <i>M</i>, then at least one of the following holds.</p><ul>\\n<li>\\n<p>There is a <span>\\\\(\\\\sigma &gt;0\\\\)</span> and a line <i>l</i> which contains <span>\\\\(\\\\Omega (|P|^\\\\sigma )\\\\)</span> points of <i>P</i>. Further, a positive proportion of <i>P</i> is covered by lines parallel to <i>l</i> each containing <span>\\\\(\\\\Omega (|P|^\\\\sigma )\\\\)</span> points of <i>P</i>.</p>\\n</li>\\n<li>\\n<p>There is a circle <span>\\\\(\\\\gamma \\\\)</span> which contains a positive proportion of <i>P</i>.</p>\\n</li>\\n</ul><p> This provides evidence for two conjectures of Erdős. We use the result of Petridis–Roche–Newton–Rudnev–Warren on the structure of the affine group combined with classical results from additive combinatorics.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":\"11 18\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-023-00066-z\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-023-00066-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,如果有限点集(P\substeq{\mathbb{R}}^2)具有尽可能少的三角形同余类,直到常数M,那么以下至少一个成立。存在一个\(\西格玛>;0\)和一条包含P的\(\ Omega(|P|^\西格玛)\。我们使用Petridis–Roche–Newton–Rudnev–Warren关于仿射群结构的结果,并结合加法组合学的经典结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Structural Theorem for Sets with Few Triangles

A Structural Theorem for Sets with Few Triangles

We show that if a finite point set \(P\subseteq {\mathbb {R}}^2\) has the fewest congruence classes of triangles possible, up to a constant M, then at least one of the following holds.

  • There is a \(\sigma >0\) and a line l which contains \(\Omega (|P|^\sigma )\) points of P. Further, a positive proportion of P is covered by lines parallel to l each containing \(\Omega (|P|^\sigma )\) points of P.

  • There is a circle \(\gamma \) which contains a positive proportion of P.

This provides evidence for two conjectures of Erdős. We use the result of Petridis–Roche–Newton–Rudnev–Warren on the structure of the affine group combined with classical results from additive combinatorics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信