从$$\chi$$-有界性分离多项式$$\chi$$-有界

IF 1 2区 数学 Q1 MATHEMATICS
Marcin Briański, James Davies, Bartosz Walczak
{"title":"从$$\\chi$$-有界性分离多项式$$\\chi$$-有界","authors":"Marcin Briański, James Davies, Bartosz Walczak","doi":"10.1007/s00493-023-00054-3","DOIUrl":null,"url":null,"abstract":"<p>Extending the idea from the recent paper by Carbonero, Hompe, Moore, and Spirkl, for every function <span>\\(f:\\mathbb {N}\\rightarrow \\mathbb {N}\\cup \\{\\infty \\}\\)</span> with <span>\\(f(1)=1\\)</span> and <span>\\(f(n)\\geqslant \\left( {\\begin{array}{c}3n+1\\\\ 3\\end{array}}\\right) \\)</span>, we construct a hereditary class of graphs <span>\\({\\mathcal {G}}\\)</span> such that the maximum chromatic number of a graph in <span>\\({\\mathcal {G}}\\)</span> with clique number <i>n</i> is equal to <i>f</i>(<i>n</i>) for every <span>\\(n\\in \\mathbb {N}\\)</span>. In particular, we prove that there exist hereditary classes of graphs that are <span>\\(\\chi \\)</span>-bounded but not polynomially <span>\\(\\chi \\)</span>-bounded.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"13 23","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Separating Polynomial $$\\\\chi $$ -Boundedness from $$\\\\chi $$ -Boundedness\",\"authors\":\"Marcin Briański, James Davies, Bartosz Walczak\",\"doi\":\"10.1007/s00493-023-00054-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Extending the idea from the recent paper by Carbonero, Hompe, Moore, and Spirkl, for every function <span>\\\\(f:\\\\mathbb {N}\\\\rightarrow \\\\mathbb {N}\\\\cup \\\\{\\\\infty \\\\}\\\\)</span> with <span>\\\\(f(1)=1\\\\)</span> and <span>\\\\(f(n)\\\\geqslant \\\\left( {\\\\begin{array}{c}3n+1\\\\\\\\ 3\\\\end{array}}\\\\right) \\\\)</span>, we construct a hereditary class of graphs <span>\\\\({\\\\mathcal {G}}\\\\)</span> such that the maximum chromatic number of a graph in <span>\\\\({\\\\mathcal {G}}\\\\)</span> with clique number <i>n</i> is equal to <i>f</i>(<i>n</i>) for every <span>\\\\(n\\\\in \\\\mathbb {N}\\\\)</span>. In particular, we prove that there exist hereditary classes of graphs that are <span>\\\\(\\\\chi \\\\)</span>-bounded but not polynomially <span>\\\\(\\\\chi \\\\)</span>-bounded.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":\"13 23\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-023-00054-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-023-00054-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 18

摘要

从Carbonero、Hompe、Moore和Spirkl最近的论文中扩展了这一观点,对于每一个函数\(f:\mathbb{N}\rightarrow\mathbb{N}\cup\{\infty\}\),其中\(f(1)=1\)和\(f{c}3n+1\\3\end{array}}\right),我们构造了一类图的遗传类({\mathcal{G}),使得团数为n的图({\ mathcal{G}})中的图的最大色数对于每个图(n \ in\mathbb{n}\)等于f(n)。特别地,我们证明了图的遗传类是有界的,但不是多项式有界的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Separating Polynomial $$\chi $$ -Boundedness from $$\chi $$ -Boundedness

Extending the idea from the recent paper by Carbonero, Hompe, Moore, and Spirkl, for every function \(f:\mathbb {N}\rightarrow \mathbb {N}\cup \{\infty \}\) with \(f(1)=1\) and \(f(n)\geqslant \left( {\begin{array}{c}3n+1\\ 3\end{array}}\right) \), we construct a hereditary class of graphs \({\mathcal {G}}\) such that the maximum chromatic number of a graph in \({\mathcal {G}}\) with clique number n is equal to f(n) for every \(n\in \mathbb {N}\). In particular, we prove that there exist hereditary classes of graphs that are \(\chi \)-bounded but not polynomially \(\chi \)-bounded.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信