随机块段模型的极限谱分布

Pub Date : 2023-07-18 DOI:10.1142/s2010326323500089
Giap Van Su, May-Ru Chen, Mei-Hui Guo, Hao-Wei Huang
{"title":"随机块段模型的极限谱分布","authors":"Giap Van Su, May-Ru Chen, Mei-Hui Guo, Hao-Wei Huang","doi":"10.1142/s2010326323500089","DOIUrl":null,"url":null,"abstract":"<p>The stochastic block model (SBM) is an extension of the Erdős–Rényi graph and has applications in numerous fields, such as data analysis, recovering community structure in graph data and social networks. In this paper, we consider the normal central SBM adjacency matrix with <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>K</mi></math></span><span></span> communities of arbitrary sizes. We derive an explicit formula for the limiting empirical spectral density function when the size of the matrix tends to infinity. We also obtain an upper bound for the operator norm of such random matrices by means of the Stieltjes transform and random matrix theory.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limiting spectral distribution of stochastic block model\",\"authors\":\"Giap Van Su, May-Ru Chen, Mei-Hui Guo, Hao-Wei Huang\",\"doi\":\"10.1142/s2010326323500089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The stochastic block model (SBM) is an extension of the Erdős–Rényi graph and has applications in numerous fields, such as data analysis, recovering community structure in graph data and social networks. In this paper, we consider the normal central SBM adjacency matrix with <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>K</mi></math></span><span></span> communities of arbitrary sizes. We derive an explicit formula for the limiting empirical spectral density function when the size of the matrix tends to infinity. We also obtain an upper bound for the operator norm of such random matrices by means of the Stieltjes transform and random matrix theory.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010326323500089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326323500089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随机块模型(SBM)是Erdõs–Rényi图的扩展,在数据分析、恢复图数据中的社区结构和社交网络等众多领域都有应用。在本文中,我们考虑具有任意大小的K个社区的正规中心SBM邻接矩阵。当矩阵的大小趋于无穷大时,我们导出了极限经验谱密度函数的一个显式公式。利用Stieltjes变换和随机矩阵理论,得到了这类随机矩阵的算子范数的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Limiting spectral distribution of stochastic block model

The stochastic block model (SBM) is an extension of the Erdős–Rényi graph and has applications in numerous fields, such as data analysis, recovering community structure in graph data and social networks. In this paper, we consider the normal central SBM adjacency matrix with K communities of arbitrary sizes. We derive an explicit formula for the limiting empirical spectral density function when the size of the matrix tends to infinity. We also obtain an upper bound for the operator norm of such random matrices by means of the Stieltjes transform and random matrix theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信