非循环平面有向图中的整数多流

IF 1 2区 数学 Q1 MATHEMATICS
Guyslain Naves
{"title":"非循环平面有向图中的整数多流","authors":"Guyslain Naves","doi":"10.1007/s00493-023-00065-0","DOIUrl":null,"url":null,"abstract":"<p>We give an algorithm with complexity <span>\\(O((R+1)^{4k^2} k^3 n)\\)</span> for the integer multiflow problem on instances (<i>G</i>, <i>H</i>, <i>r</i>, <i>c</i>) with <i>G</i> an acyclic planar digraph and <span>\\(r+c\\)</span> Eulerian. Here, <span>\\(n = |V(G)|\\)</span>, <span>\\(k = |E(H)|\\)</span> and <i>R</i> is the maximum request <span>\\(\\max _{h \\in E(H)} r(h)\\)</span>. When <i>k</i> is fixed, this gives a polynomial-time algorithm for the arc-disjoint paths problem under the same hypothesis.Kindly check and confirm the edit made in the title.Confirmed\nJournal instruction requires a city and country for affiliations; however, these are missing in affiliation [1]. Please verify if the provided city is correct and amend if necessary.Since the submission, my affiliation has changed. It should now be:\nLaboratoire d'Informatique &amp; Systèmes, Aix-Marseille Université, CNRS UMR 7020, Marseille, France</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integer Multiflows in Acyclic Planar Digraphs\",\"authors\":\"Guyslain Naves\",\"doi\":\"10.1007/s00493-023-00065-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give an algorithm with complexity <span>\\\\(O((R+1)^{4k^2} k^3 n)\\\\)</span> for the integer multiflow problem on instances (<i>G</i>, <i>H</i>, <i>r</i>, <i>c</i>) with <i>G</i> an acyclic planar digraph and <span>\\\\(r+c\\\\)</span> Eulerian. Here, <span>\\\\(n = |V(G)|\\\\)</span>, <span>\\\\(k = |E(H)|\\\\)</span> and <i>R</i> is the maximum request <span>\\\\(\\\\max _{h \\\\in E(H)} r(h)\\\\)</span>. When <i>k</i> is fixed, this gives a polynomial-time algorithm for the arc-disjoint paths problem under the same hypothesis.Kindly check and confirm the edit made in the title.Confirmed\\nJournal instruction requires a city and country for affiliations; however, these are missing in affiliation [1]. Please verify if the provided city is correct and amend if necessary.Since the submission, my affiliation has changed. It should now be:\\nLaboratoire d'Informatique &amp; Systèmes, Aix-Marseille Université, CNRS UMR 7020, Marseille, France</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-023-00065-0\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-023-00065-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

针对实例(G,H,R,c)上的整数多流问题,给出了一个复杂度为O(((R+1)^{4k^2}k^3n)的算法,其中G是非循环平面有向图和(R+c)Eulerian。这里,\(n=|V(G)|\),\(k=|E(H)|\。当k是固定的时,这给出了在相同假设下求解弧不相交路径问题的多项式时间算法。请检查并确认标题中的编辑。ConfirmedJournal指令要求加入城市和国家;然而,这些在隶属关系中是缺失的[1]。请核实所提供的城市是否正确,并在必要时进行修改。提交后,我的隶属关系发生了变化。现在应该是:信息实验室;法国马赛艾克斯马赛大学,CNRS UMR 7020
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Integer Multiflows in Acyclic Planar Digraphs

Integer Multiflows in Acyclic Planar Digraphs

We give an algorithm with complexity \(O((R+1)^{4k^2} k^3 n)\) for the integer multiflow problem on instances (GHrc) with G an acyclic planar digraph and \(r+c\) Eulerian. Here, \(n = |V(G)|\), \(k = |E(H)|\) and R is the maximum request \(\max _{h \in E(H)} r(h)\). When k is fixed, this gives a polynomial-time algorithm for the arc-disjoint paths problem under the same hypothesis.Kindly check and confirm the edit made in the title.Confirmed Journal instruction requires a city and country for affiliations; however, these are missing in affiliation [1]. Please verify if the provided city is correct and amend if necessary.Since the submission, my affiliation has changed. It should now be: Laboratoire d'Informatique & Systèmes, Aix-Marseille Université, CNRS UMR 7020, Marseille, France

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信