色数的多项式界。IV: 排除五顶点路径的一个近多项式界

IF 1 2区 数学 Q1 MATHEMATICS
Alex Scott, Paul Seymour, Sophie Spirkl
{"title":"色数的多项式界。IV: 排除五顶点路径的一个近多项式界","authors":"Alex Scott, Paul Seymour, Sophie Spirkl","doi":"10.1007/s00493-023-00015-w","DOIUrl":null,"url":null,"abstract":"<p>A graph <i>G</i> is <i>H</i><i>-free</i> if it has no induced subgraph isomorphic to <i>H</i>. We prove that a <span>\\(P_5\\)</span>-free graph with clique number <span>\\(\\omega \\ge 3\\)</span> has chromatic number at most <span>\\(\\omega ^{\\log _2(\\omega )}\\)</span>. The best previous result was an exponential upper bound <span>\\((5/27)3^{\\omega }\\)</span>, due to Esperet, Lemoine, Maffray, and Morel. A polynomial bound would imply that the celebrated Erdős-Hajnal conjecture holds for <span>\\(P_5\\)</span>, which is the smallest open case. Thus, there is great interest in whether there is a polynomial bound for <span>\\(P_5\\)</span>-free graphs, and our result is an attempt to approach that.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"13 2","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Polynomial Bounds for Chromatic Number. IV: A Near-polynomial Bound for Excluding the Five-vertex Path\",\"authors\":\"Alex Scott, Paul Seymour, Sophie Spirkl\",\"doi\":\"10.1007/s00493-023-00015-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A graph <i>G</i> is <i>H</i><i>-free</i> if it has no induced subgraph isomorphic to <i>H</i>. We prove that a <span>\\\\(P_5\\\\)</span>-free graph with clique number <span>\\\\(\\\\omega \\\\ge 3\\\\)</span> has chromatic number at most <span>\\\\(\\\\omega ^{\\\\log _2(\\\\omega )}\\\\)</span>. The best previous result was an exponential upper bound <span>\\\\((5/27)3^{\\\\omega }\\\\)</span>, due to Esperet, Lemoine, Maffray, and Morel. A polynomial bound would imply that the celebrated Erdős-Hajnal conjecture holds for <span>\\\\(P_5\\\\)</span>, which is the smallest open case. Thus, there is great interest in whether there is a polynomial bound for <span>\\\\(P_5\\\\)</span>-free graphs, and our result is an attempt to approach that.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":\"13 2\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-023-00015-w\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-023-00015-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 18

摘要

如果图G没有同构于H的诱导子图,则图G是无H-的。我们证明了团数为(ω.ge3)的无(P_5\)图至多有色数(ω^{\log_2(ω)})。由于Esperet、Lemoine、Maffrey和Morel,以前最好的结果是指数上界((5/27)3^{\omega})。多项式界意味着著名的Erdõs-Hajnal猜想适用于\(P_5\),这是最小的开放情况。因此,人们对(P_5\)-自由图是否存在多项式界非常感兴趣,我们的结果是试图接近这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polynomial Bounds for Chromatic Number. IV: A Near-polynomial Bound for Excluding the Five-vertex Path

A graph G is H-free if it has no induced subgraph isomorphic to H. We prove that a \(P_5\)-free graph with clique number \(\omega \ge 3\) has chromatic number at most \(\omega ^{\log _2(\omega )}\). The best previous result was an exponential upper bound \((5/27)3^{\omega }\), due to Esperet, Lemoine, Maffray, and Morel. A polynomial bound would imply that the celebrated Erdős-Hajnal conjecture holds for \(P_5\), which is the smallest open case. Thus, there is great interest in whether there is a polynomial bound for \(P_5\)-free graphs, and our result is an attempt to approach that.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信