Marwa Atallah, Toru Yamashita, Xiao Hu, Xinran Hu, Koji Abe
{"title":"依达拉奉对胎盘缺血小鼠模型的胎脑具有神经保护、抗炎和抗氧化作用。","authors":"Marwa Atallah, Toru Yamashita, Xiao Hu, Xinran Hu, Koji Abe","doi":"10.1007/s11481-023-10095-6","DOIUrl":null,"url":null,"abstract":"<p><p>Reduced uterine perfusion pressure (RUPP) is a well-established model which mimics many clinical features of preeclampsia (PE). Edaravone is a free radical scavenger with neuroprotective, antioxidant and anti-inflammatory effects against different models of cerebral ischemia. Therefore, we aimed to elucidate the different potential mechanisms through which PE affects fetal brain development using our previously established RUPP-placental ischemia mouse model. In addition, we investigated the neuroprotective effect of edaravone against the RUPP-induced fetal brain development alterations. On gestation day (GD) 13, pregnant mice were divided into four groups; sham (SV), edaravone (SE), RUPP (RV), and RUPP+edaravone (RE). SV and SE groups underwent sham surgeries, however, RV and RE groups were subjected to RUPP surgery via bilateral uterine ligation. Edaravone (3mg/kg) was injected via tail i.v. injection from GD 14-18. The fetal brains from different groups were collected on GD 18 and subjected to further investigations. The results showed that RUPP altered the structure of fetal brain cortex, induced neurodegeneration, increased the expression of the investigated pro-inflammatory markers; TNF-α, IL-6, IL-1β, and MMP-9. RUPP resulted in microglial and astrocyte activation in the fetal brains, in addition to upregulation of Hif-1α and iNOS. Edaravone conferred a neuroprotective effect via alleviating the inflammatory response, restoring the neuronal structure and decreasing oxidative stress in the developing fetal brain. In conclusion, RUPP-placental ischemia mouse model could be a useful tool to further understand the underlying mechanisms of PE-induced child neuronal alterations. Edaravone could be a potential adjuvant therapy during PE to protect the developing fetal brain. The current study investigated the effects of a placenta-induced ischemia mouse model using reduced uterine perfusion pressure (RUPP) surgery on the fetal brain development and the potential neuroprotective effects of the drug edaravone. The study found that the RUPP model caused neurodegeneration and a pro-inflammatory response in the developing fetal brain, as well as hypoxia and oxidative stress. However, maternal injection of edaravone showed a strong ability to protect against these detrimental effects and target multiple pathways associated with neuronal damage. The current study suggests that the RUPP model could be useful for further study of the impact of preeclampsia on fetal brain development and that edaravone may have potential as a therapy for protecting against this damage.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":" ","pages":"640-656"},"PeriodicalIF":6.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Edaravone Confers Neuroprotective, Anti-inflammatory, and Antioxidant Effects on the Fetal Brain of a Placental-ischemia Mouse Model.\",\"authors\":\"Marwa Atallah, Toru Yamashita, Xiao Hu, Xinran Hu, Koji Abe\",\"doi\":\"10.1007/s11481-023-10095-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reduced uterine perfusion pressure (RUPP) is a well-established model which mimics many clinical features of preeclampsia (PE). Edaravone is a free radical scavenger with neuroprotective, antioxidant and anti-inflammatory effects against different models of cerebral ischemia. Therefore, we aimed to elucidate the different potential mechanisms through which PE affects fetal brain development using our previously established RUPP-placental ischemia mouse model. In addition, we investigated the neuroprotective effect of edaravone against the RUPP-induced fetal brain development alterations. On gestation day (GD) 13, pregnant mice were divided into four groups; sham (SV), edaravone (SE), RUPP (RV), and RUPP+edaravone (RE). SV and SE groups underwent sham surgeries, however, RV and RE groups were subjected to RUPP surgery via bilateral uterine ligation. Edaravone (3mg/kg) was injected via tail i.v. injection from GD 14-18. The fetal brains from different groups were collected on GD 18 and subjected to further investigations. The results showed that RUPP altered the structure of fetal brain cortex, induced neurodegeneration, increased the expression of the investigated pro-inflammatory markers; TNF-α, IL-6, IL-1β, and MMP-9. RUPP resulted in microglial and astrocyte activation in the fetal brains, in addition to upregulation of Hif-1α and iNOS. Edaravone conferred a neuroprotective effect via alleviating the inflammatory response, restoring the neuronal structure and decreasing oxidative stress in the developing fetal brain. In conclusion, RUPP-placental ischemia mouse model could be a useful tool to further understand the underlying mechanisms of PE-induced child neuronal alterations. Edaravone could be a potential adjuvant therapy during PE to protect the developing fetal brain. The current study investigated the effects of a placenta-induced ischemia mouse model using reduced uterine perfusion pressure (RUPP) surgery on the fetal brain development and the potential neuroprotective effects of the drug edaravone. The study found that the RUPP model caused neurodegeneration and a pro-inflammatory response in the developing fetal brain, as well as hypoxia and oxidative stress. However, maternal injection of edaravone showed a strong ability to protect against these detrimental effects and target multiple pathways associated with neuronal damage. The current study suggests that the RUPP model could be useful for further study of the impact of preeclampsia on fetal brain development and that edaravone may have potential as a therapy for protecting against this damage.</p>\",\"PeriodicalId\":73858,\"journal\":{\"name\":\"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology\",\"volume\":\" \",\"pages\":\"640-656\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11481-023-10095-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11481-023-10095-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Edaravone Confers Neuroprotective, Anti-inflammatory, and Antioxidant Effects on the Fetal Brain of a Placental-ischemia Mouse Model.
Reduced uterine perfusion pressure (RUPP) is a well-established model which mimics many clinical features of preeclampsia (PE). Edaravone is a free radical scavenger with neuroprotective, antioxidant and anti-inflammatory effects against different models of cerebral ischemia. Therefore, we aimed to elucidate the different potential mechanisms through which PE affects fetal brain development using our previously established RUPP-placental ischemia mouse model. In addition, we investigated the neuroprotective effect of edaravone against the RUPP-induced fetal brain development alterations. On gestation day (GD) 13, pregnant mice were divided into four groups; sham (SV), edaravone (SE), RUPP (RV), and RUPP+edaravone (RE). SV and SE groups underwent sham surgeries, however, RV and RE groups were subjected to RUPP surgery via bilateral uterine ligation. Edaravone (3mg/kg) was injected via tail i.v. injection from GD 14-18. The fetal brains from different groups were collected on GD 18 and subjected to further investigations. The results showed that RUPP altered the structure of fetal brain cortex, induced neurodegeneration, increased the expression of the investigated pro-inflammatory markers; TNF-α, IL-6, IL-1β, and MMP-9. RUPP resulted in microglial and astrocyte activation in the fetal brains, in addition to upregulation of Hif-1α and iNOS. Edaravone conferred a neuroprotective effect via alleviating the inflammatory response, restoring the neuronal structure and decreasing oxidative stress in the developing fetal brain. In conclusion, RUPP-placental ischemia mouse model could be a useful tool to further understand the underlying mechanisms of PE-induced child neuronal alterations. Edaravone could be a potential adjuvant therapy during PE to protect the developing fetal brain. The current study investigated the effects of a placenta-induced ischemia mouse model using reduced uterine perfusion pressure (RUPP) surgery on the fetal brain development and the potential neuroprotective effects of the drug edaravone. The study found that the RUPP model caused neurodegeneration and a pro-inflammatory response in the developing fetal brain, as well as hypoxia and oxidative stress. However, maternal injection of edaravone showed a strong ability to protect against these detrimental effects and target multiple pathways associated with neuronal damage. The current study suggests that the RUPP model could be useful for further study of the impact of preeclampsia on fetal brain development and that edaravone may have potential as a therapy for protecting against this damage.