{"title":"冰芯作为抗菌药物的来源:从生物勘探到生物设计。","authors":"Ying-Chiang Jeffrey Lee, Bahar Javdan","doi":"10.34133/bdr.0024","DOIUrl":null,"url":null,"abstract":"<p><p>The golden age has passed for antibiotic discovery, and while some antibiotics are currently in various phases of clinical trials in the United States, many pharmaceutical companies have abandoned antibiotic research. With the need for antibiotics, we should expand our horizon for therapeutic mining and can look toward understudied sources such as ice cores. Ice cores contain microorganisms and genetic material that have been frozen in time for thousands of years. The antibiotics used by these organisms are encoded in their genomes, which can be unlocked, identified, and characterized with modern advances in molecular biology, genetic sequencing, various computational approaches, and established natural product discovery pipelines. While synthetic biology can be used in natural product discovery approaches, synthetic biology and bioengineering efforts can also be leveraged in the selection and biodesign of increased compound yields, potency, and stability. Here, we provide the perspective that ice cores can be a source of novel antibiotic compounds and that the tools of synthetic biology can be used to design better antimicrobials.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":"5 ","pages":"0024"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10623340/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ice Cores as a Source for Antimicrobials: From Bioprospecting to Biodesign.\",\"authors\":\"Ying-Chiang Jeffrey Lee, Bahar Javdan\",\"doi\":\"10.34133/bdr.0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The golden age has passed for antibiotic discovery, and while some antibiotics are currently in various phases of clinical trials in the United States, many pharmaceutical companies have abandoned antibiotic research. With the need for antibiotics, we should expand our horizon for therapeutic mining and can look toward understudied sources such as ice cores. Ice cores contain microorganisms and genetic material that have been frozen in time for thousands of years. The antibiotics used by these organisms are encoded in their genomes, which can be unlocked, identified, and characterized with modern advances in molecular biology, genetic sequencing, various computational approaches, and established natural product discovery pipelines. While synthetic biology can be used in natural product discovery approaches, synthetic biology and bioengineering efforts can also be leveraged in the selection and biodesign of increased compound yields, potency, and stability. Here, we provide the perspective that ice cores can be a source of novel antibiotic compounds and that the tools of synthetic biology can be used to design better antimicrobials.</p>\",\"PeriodicalId\":56832,\"journal\":{\"name\":\"生物设计研究(英文)\",\"volume\":\"5 \",\"pages\":\"0024\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10623340/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物设计研究(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.34133/bdr.0024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物设计研究(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.34133/bdr.0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Ice Cores as a Source for Antimicrobials: From Bioprospecting to Biodesign.
The golden age has passed for antibiotic discovery, and while some antibiotics are currently in various phases of clinical trials in the United States, many pharmaceutical companies have abandoned antibiotic research. With the need for antibiotics, we should expand our horizon for therapeutic mining and can look toward understudied sources such as ice cores. Ice cores contain microorganisms and genetic material that have been frozen in time for thousands of years. The antibiotics used by these organisms are encoded in their genomes, which can be unlocked, identified, and characterized with modern advances in molecular biology, genetic sequencing, various computational approaches, and established natural product discovery pipelines. While synthetic biology can be used in natural product discovery approaches, synthetic biology and bioengineering efforts can also be leveraged in the selection and biodesign of increased compound yields, potency, and stability. Here, we provide the perspective that ice cores can be a source of novel antibiotic compounds and that the tools of synthetic biology can be used to design better antimicrobials.