{"title":"使用非负矩阵因子分解对“组学数据”进行综合亚型分析的随机奇异值分解。","authors":"Yonghui Ni, Jianghua He, Prabhakar Chalise","doi":"10.1515/sagmb-2022-0047","DOIUrl":null,"url":null,"abstract":"<p><p>Integration of multiple 'omics datasets for differentiating cancer subtypes is a powerful technic that leverages the consistent and complementary information across multi-omics data. Matrix factorization is a common technique used in integrative clustering for identifying latent subtype structure across multi-omics data. High dimensionality of the omics data and long computation time have been common challenges of clustering methods. In order to address the challenges, we propose randomized singular value decomposition (RSVD) for integrative clustering using Non-negative Matrix Factorization: <i>intNMF-rsvd</i>. The method utilizes RSVD to reduce the dimensionality by projecting the data into eigen vector space with user specified lower rank. Then, clustering analysis is carried out by estimating common basis matrix across the projected multi-omics datasets. The performance of the proposed method was assessed using the simulated datasets and compared with six state-of-the-art integrative clustering methods using real-life datasets from The Cancer Genome Atlas Study. <i>intNMF-rsvd</i> was found working efficiently and competitively as compared to standard intNMF and other multi-omics clustering methods. Most importantly, <i>intNMF-rsvd</i> can handle large number of features and significantly reduce the computation time. The identified subtypes can be utilized for further clinical association studies to understand the etiology of the disease.</p>","PeriodicalId":49477,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"22 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Randomized singular value decomposition for integrative subtype analysis of 'omics data' using non-negative matrix factorization.\",\"authors\":\"Yonghui Ni, Jianghua He, Prabhakar Chalise\",\"doi\":\"10.1515/sagmb-2022-0047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Integration of multiple 'omics datasets for differentiating cancer subtypes is a powerful technic that leverages the consistent and complementary information across multi-omics data. Matrix factorization is a common technique used in integrative clustering for identifying latent subtype structure across multi-omics data. High dimensionality of the omics data and long computation time have been common challenges of clustering methods. In order to address the challenges, we propose randomized singular value decomposition (RSVD) for integrative clustering using Non-negative Matrix Factorization: <i>intNMF-rsvd</i>. The method utilizes RSVD to reduce the dimensionality by projecting the data into eigen vector space with user specified lower rank. Then, clustering analysis is carried out by estimating common basis matrix across the projected multi-omics datasets. The performance of the proposed method was assessed using the simulated datasets and compared with six state-of-the-art integrative clustering methods using real-life datasets from The Cancer Genome Atlas Study. <i>intNMF-rsvd</i> was found working efficiently and competitively as compared to standard intNMF and other multi-omics clustering methods. Most importantly, <i>intNMF-rsvd</i> can handle large number of features and significantly reduce the computation time. The identified subtypes can be utilized for further clinical association studies to understand the etiology of the disease.</p>\",\"PeriodicalId\":49477,\"journal\":{\"name\":\"Statistical Applications in Genetics and Molecular Biology\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Applications in Genetics and Molecular Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/sagmb-2022-0047\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2022-0047","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Randomized singular value decomposition for integrative subtype analysis of 'omics data' using non-negative matrix factorization.
Integration of multiple 'omics datasets for differentiating cancer subtypes is a powerful technic that leverages the consistent and complementary information across multi-omics data. Matrix factorization is a common technique used in integrative clustering for identifying latent subtype structure across multi-omics data. High dimensionality of the omics data and long computation time have been common challenges of clustering methods. In order to address the challenges, we propose randomized singular value decomposition (RSVD) for integrative clustering using Non-negative Matrix Factorization: intNMF-rsvd. The method utilizes RSVD to reduce the dimensionality by projecting the data into eigen vector space with user specified lower rank. Then, clustering analysis is carried out by estimating common basis matrix across the projected multi-omics datasets. The performance of the proposed method was assessed using the simulated datasets and compared with six state-of-the-art integrative clustering methods using real-life datasets from The Cancer Genome Atlas Study. intNMF-rsvd was found working efficiently and competitively as compared to standard intNMF and other multi-omics clustering methods. Most importantly, intNMF-rsvd can handle large number of features and significantly reduce the computation time. The identified subtypes can be utilized for further clinical association studies to understand the etiology of the disease.
期刊介绍:
Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.