Qiong Wu, Jiahan Li, Pingyang Dai, Qixiang Ye, Liujuan Cao, Yongjian Wu, Rongrong Ji
{"title":"基于双层非对称相互学习的无监督领域自适应的人再识别。","authors":"Qiong Wu, Jiahan Li, Pingyang Dai, Qixiang Ye, Liujuan Cao, Yongjian Wu, Rongrong Ji","doi":"10.1109/TNNLS.2023.3326477","DOIUrl":null,"url":null,"abstract":"<p><p>Unsupervised domain adaptation (UDA) person reidentification (Re-ID) aims to identify pedestrian images within an unlabeled target domain with an auxiliary labeled source-domain dataset. Many existing works attempt to recover reliable identity information by considering multiple homogeneous networks. And take these generated labels to train the model in the target domain. However, these homogeneous networks identify people in approximate subspaces and equally exchange their knowledge with others or their mean net to improve their ability, inevitably limiting the scope of available knowledge and putting them into the same mistake. This article proposes a dual-level asymmetric mutual learning (DAML) method to learn discriminative representations from a broader knowledge scope with diverse embedding spaces. Specifically, two heterogeneous networks mutually learn knowledge from asymmetric subspaces through the pseudo label generation in a hard distillation manner. The knowledge transfer between two networks is based on an asymmetric mutual learning (AML) manner. The teacher network learns to identify both the target and source domain while adapting to the target domain distribution based on the knowledge of the student. Meanwhile, the student network is trained on the target dataset and employs the ground-truth label through the knowledge of the teacher. Extensive experiments in Market-1501, CUHK-SYSU, and MSMT17 public datasets verified the superiority of DAML over state-of-the-arts (SOTA).</p>","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"PP ","pages":""},"PeriodicalIF":10.2000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised Domain Adaptation on Person Reidentification via Dual-Level Asymmetric Mutual Learning.\",\"authors\":\"Qiong Wu, Jiahan Li, Pingyang Dai, Qixiang Ye, Liujuan Cao, Yongjian Wu, Rongrong Ji\",\"doi\":\"10.1109/TNNLS.2023.3326477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Unsupervised domain adaptation (UDA) person reidentification (Re-ID) aims to identify pedestrian images within an unlabeled target domain with an auxiliary labeled source-domain dataset. Many existing works attempt to recover reliable identity information by considering multiple homogeneous networks. And take these generated labels to train the model in the target domain. However, these homogeneous networks identify people in approximate subspaces and equally exchange their knowledge with others or their mean net to improve their ability, inevitably limiting the scope of available knowledge and putting them into the same mistake. This article proposes a dual-level asymmetric mutual learning (DAML) method to learn discriminative representations from a broader knowledge scope with diverse embedding spaces. Specifically, two heterogeneous networks mutually learn knowledge from asymmetric subspaces through the pseudo label generation in a hard distillation manner. The knowledge transfer between two networks is based on an asymmetric mutual learning (AML) manner. The teacher network learns to identify both the target and source domain while adapting to the target domain distribution based on the knowledge of the student. Meanwhile, the student network is trained on the target dataset and employs the ground-truth label through the knowledge of the teacher. Extensive experiments in Market-1501, CUHK-SYSU, and MSMT17 public datasets verified the superiority of DAML over state-of-the-arts (SOTA).</p>\",\"PeriodicalId\":13303,\"journal\":{\"name\":\"IEEE transactions on neural networks and learning systems\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks and learning systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TNNLS.2023.3326477\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks and learning systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TNNLS.2023.3326477","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Unsupervised Domain Adaptation on Person Reidentification via Dual-Level Asymmetric Mutual Learning.
Unsupervised domain adaptation (UDA) person reidentification (Re-ID) aims to identify pedestrian images within an unlabeled target domain with an auxiliary labeled source-domain dataset. Many existing works attempt to recover reliable identity information by considering multiple homogeneous networks. And take these generated labels to train the model in the target domain. However, these homogeneous networks identify people in approximate subspaces and equally exchange their knowledge with others or their mean net to improve their ability, inevitably limiting the scope of available knowledge and putting them into the same mistake. This article proposes a dual-level asymmetric mutual learning (DAML) method to learn discriminative representations from a broader knowledge scope with diverse embedding spaces. Specifically, two heterogeneous networks mutually learn knowledge from asymmetric subspaces through the pseudo label generation in a hard distillation manner. The knowledge transfer between two networks is based on an asymmetric mutual learning (AML) manner. The teacher network learns to identify both the target and source domain while adapting to the target domain distribution based on the knowledge of the student. Meanwhile, the student network is trained on the target dataset and employs the ground-truth label through the knowledge of the teacher. Extensive experiments in Market-1501, CUHK-SYSU, and MSMT17 public datasets verified the superiority of DAML over state-of-the-arts (SOTA).
期刊介绍:
The focus of IEEE Transactions on Neural Networks and Learning Systems is to present scholarly articles discussing the theory, design, and applications of neural networks as well as other learning systems. The journal primarily highlights technical and scientific research in this domain.