非同层复用网络中的层内同步和层间准同步。

IF 10.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yujuan Han, Wenlian Lu, Tianping Chen
{"title":"非同层复用网络中的层内同步和层间准同步。","authors":"Yujuan Han, Wenlian Lu, Tianping Chen","doi":"10.1109/TNNLS.2023.3326629","DOIUrl":null,"url":null,"abstract":"<p><p>In this article, we discuss synchronization in multiplex networks of different layers. Both the topologies and the uncoupled node dynamics in different layers are different. Novel sufficient criteria are derived for intralayer synchronization and interlayer quasisynchronization, in terms of the coupling matrices, the coupling strengths, and the intrinsic function of the uncoupled systems. We also investigate interlayer synchronization of multiplex networks with identical uncoupled node dynamics. Finally, we give some numerical examples to validate the effectiveness of these theoretical results.</p>","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"PP ","pages":""},"PeriodicalIF":10.2000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intralayer Synchronization and Interlayer Quasisynchronization in Multiplex Networks of Nonidentical Layers.\",\"authors\":\"Yujuan Han, Wenlian Lu, Tianping Chen\",\"doi\":\"10.1109/TNNLS.2023.3326629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this article, we discuss synchronization in multiplex networks of different layers. Both the topologies and the uncoupled node dynamics in different layers are different. Novel sufficient criteria are derived for intralayer synchronization and interlayer quasisynchronization, in terms of the coupling matrices, the coupling strengths, and the intrinsic function of the uncoupled systems. We also investigate interlayer synchronization of multiplex networks with identical uncoupled node dynamics. Finally, we give some numerical examples to validate the effectiveness of these theoretical results.</p>\",\"PeriodicalId\":13303,\"journal\":{\"name\":\"IEEE transactions on neural networks and learning systems\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks and learning systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TNNLS.2023.3326629\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks and learning systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TNNLS.2023.3326629","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们讨论了不同层的多路复用网络中的同步。不同层中的拓扑结构和非耦合节点动力学都是不同的。根据非耦合系统的耦合矩阵、耦合强度和本征函数,导出了层内同步和层间准同步的新的充分准则。我们还研究了具有相同解耦节点动力学的多路复用网络的层间同步。最后,通过算例验证了这些理论结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intralayer Synchronization and Interlayer Quasisynchronization in Multiplex Networks of Nonidentical Layers.

In this article, we discuss synchronization in multiplex networks of different layers. Both the topologies and the uncoupled node dynamics in different layers are different. Novel sufficient criteria are derived for intralayer synchronization and interlayer quasisynchronization, in terms of the coupling matrices, the coupling strengths, and the intrinsic function of the uncoupled systems. We also investigate interlayer synchronization of multiplex networks with identical uncoupled node dynamics. Finally, we give some numerical examples to validate the effectiveness of these theoretical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE transactions on neural networks and learning systems
IEEE transactions on neural networks and learning systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
CiteScore
23.80
自引率
9.60%
发文量
2102
审稿时长
3-8 weeks
期刊介绍: The focus of IEEE Transactions on Neural Networks and Learning Systems is to present scholarly articles discussing the theory, design, and applications of neural networks as well as other learning systems. The journal primarily highlights technical and scientific research in this domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信