Sunil Kumar Khokhar, Manoj Kumar, Sandeep Kumar, Tejaswini Manae, Nithin Thanissery, Subasree Ramakrishnan, Faheem Arshad, Chandana Nagaraj, Sandhya Mangalore, Suvarna Alladi, Tapan K Gandhi, Rose Dawn Bharath
{"title":"阿尔茨海默病与网络分类增加有关:来自代谢连接的证据。","authors":"Sunil Kumar Khokhar, Manoj Kumar, Sandeep Kumar, Tejaswini Manae, Nithin Thanissery, Subasree Ramakrishnan, Faheem Arshad, Chandana Nagaraj, Sandhya Mangalore, Suvarna Alladi, Tapan K Gandhi, Rose Dawn Bharath","doi":"10.1089/brain.2023.0024","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Introduction:</i></b> Unraveling the network pathobiology in neurodegenerative disorders is a popular and promising field in research. We use a relatively newer network measure of assortativity in metabolic connectivity to understand network differences in patients with Alzheimer's Disease (AD), compared with those with mild cognitive impairment (MCI). <b><i>Methods:</i></b> Eighty-three demographically matched patients with dementia (56 AD and 27 MCI) who underwent positron emission tomography-magnetic resonance imaging (PET-MRI) study were recruited for this exploratory study. Global and nodal network measures obtained using the BRain Analysis using graPH theory toolbox were used to derive group-level differences (corrected <i>p</i> < 0.05). The methods were validated in age, and gender-matched 23 cognitively normal, 25 MCI, and 53 AD patients from the publicly available Alzheimer's Disease Neuroimaging Initiative (ADNI) data. Regions that revealed significant differences were correlated with the Addenbrooke's Cognitive Examination-III (ACE-III) scores. <b><i>Results:</i></b> Patients with AD revealed significantly increased global assortativity compared with the MCI group. In addition, they also revealed increased modularity and decreased participation coefficient. These findings were validated in the ADNI data. We also found that the regional standard uptake values of the right superior parietal and left superior temporal lobes were proportional to the ACE-III memory subdomain scores. <b><i>Conclusion:</i></b> Global errors associated with network assortativity are found in patients with AD, making the networks more regular and less resilient. Since the regional measures of these network errors were proportional to memory deficits, these measures could be useful in understanding the network pathobiology in AD.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"610-620"},"PeriodicalIF":2.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alzheimer's Disease Is Associated with Increased Network Assortativity: Evidence from Metabolic Connectivity.\",\"authors\":\"Sunil Kumar Khokhar, Manoj Kumar, Sandeep Kumar, Tejaswini Manae, Nithin Thanissery, Subasree Ramakrishnan, Faheem Arshad, Chandana Nagaraj, Sandhya Mangalore, Suvarna Alladi, Tapan K Gandhi, Rose Dawn Bharath\",\"doi\":\"10.1089/brain.2023.0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Introduction:</i></b> Unraveling the network pathobiology in neurodegenerative disorders is a popular and promising field in research. We use a relatively newer network measure of assortativity in metabolic connectivity to understand network differences in patients with Alzheimer's Disease (AD), compared with those with mild cognitive impairment (MCI). <b><i>Methods:</i></b> Eighty-three demographically matched patients with dementia (56 AD and 27 MCI) who underwent positron emission tomography-magnetic resonance imaging (PET-MRI) study were recruited for this exploratory study. Global and nodal network measures obtained using the BRain Analysis using graPH theory toolbox were used to derive group-level differences (corrected <i>p</i> < 0.05). The methods were validated in age, and gender-matched 23 cognitively normal, 25 MCI, and 53 AD patients from the publicly available Alzheimer's Disease Neuroimaging Initiative (ADNI) data. Regions that revealed significant differences were correlated with the Addenbrooke's Cognitive Examination-III (ACE-III) scores. <b><i>Results:</i></b> Patients with AD revealed significantly increased global assortativity compared with the MCI group. In addition, they also revealed increased modularity and decreased participation coefficient. These findings were validated in the ADNI data. We also found that the regional standard uptake values of the right superior parietal and left superior temporal lobes were proportional to the ACE-III memory subdomain scores. <b><i>Conclusion:</i></b> Global errors associated with network assortativity are found in patients with AD, making the networks more regular and less resilient. Since the regional measures of these network errors were proportional to memory deficits, these measures could be useful in understanding the network pathobiology in AD.</p>\",\"PeriodicalId\":9155,\"journal\":{\"name\":\"Brain connectivity\",\"volume\":\" \",\"pages\":\"610-620\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain connectivity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/brain.2023.0024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain connectivity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/brain.2023.0024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Alzheimer's Disease Is Associated with Increased Network Assortativity: Evidence from Metabolic Connectivity.
Introduction: Unraveling the network pathobiology in neurodegenerative disorders is a popular and promising field in research. We use a relatively newer network measure of assortativity in metabolic connectivity to understand network differences in patients with Alzheimer's Disease (AD), compared with those with mild cognitive impairment (MCI). Methods: Eighty-three demographically matched patients with dementia (56 AD and 27 MCI) who underwent positron emission tomography-magnetic resonance imaging (PET-MRI) study were recruited for this exploratory study. Global and nodal network measures obtained using the BRain Analysis using graPH theory toolbox were used to derive group-level differences (corrected p < 0.05). The methods were validated in age, and gender-matched 23 cognitively normal, 25 MCI, and 53 AD patients from the publicly available Alzheimer's Disease Neuroimaging Initiative (ADNI) data. Regions that revealed significant differences were correlated with the Addenbrooke's Cognitive Examination-III (ACE-III) scores. Results: Patients with AD revealed significantly increased global assortativity compared with the MCI group. In addition, they also revealed increased modularity and decreased participation coefficient. These findings were validated in the ADNI data. We also found that the regional standard uptake values of the right superior parietal and left superior temporal lobes were proportional to the ACE-III memory subdomain scores. Conclusion: Global errors associated with network assortativity are found in patients with AD, making the networks more regular and less resilient. Since the regional measures of these network errors were proportional to memory deficits, these measures could be useful in understanding the network pathobiology in AD.
期刊介绍:
Brain Connectivity provides groundbreaking findings in the rapidly advancing field of connectivity research at the systems and network levels. The Journal disseminates information on brain mapping, modeling, novel research techniques, new imaging modalities, preclinical animal studies, and the translation of research discoveries from the laboratory to the clinic.
This essential journal fosters the application of basic biological discoveries and contributes to the development of novel diagnostic and therapeutic interventions to recognize and treat a broad range of neurodegenerative and psychiatric disorders such as: Alzheimer’s disease, attention-deficit hyperactivity disorder, posttraumatic stress disorder, epilepsy, traumatic brain injury, stroke, dementia, and depression.